mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 16:59:16 +08:00
449 lines
14 KiB
C++
449 lines
14 KiB
C++
|
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
NVIDIA HW Decoder, both dGPU and Tegra, normally outputs NV12 pitch format
|
||
|
frames. For the inference using TensorRT, the input frame needs to be BGR planar
|
||
|
format with possibly different size. So, conversion and resizing from NV12 to
|
||
|
BGR planar is usually required for the inference following decoding.
|
||
|
This CUDA code is to provide a reference implementation for conversion and
|
||
|
resizing.
|
||
|
|
||
|
Limitaion
|
||
|
=========
|
||
|
NV12resize needs the height to be a even value.
|
||
|
|
||
|
Note
|
||
|
====
|
||
|
Resize function needs the pitch of image buffer to be 32 alignment.
|
||
|
|
||
|
Run
|
||
|
====
|
||
|
./NV12toBGRandResize
|
||
|
OR
|
||
|
./NV12toBGRandResize -input=data/test1920x1080.nv12 -width=1920 -height=1080 \
|
||
|
-dst_width=640 -dst_height=480 -batch=40 -device=0
|
||
|
|
||
|
*/
|
||
|
|
||
|
#include <cuda.h>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <cassert>
|
||
|
#include <fstream>
|
||
|
#include <iostream>
|
||
|
#include <memory>
|
||
|
|
||
|
#include "resize_convert.h"
|
||
|
#include "utils.h"
|
||
|
|
||
|
#define TEST_LOOP 20
|
||
|
|
||
|
typedef struct _nv12_to_bgr24_context_t {
|
||
|
int width;
|
||
|
int height;
|
||
|
int pitch;
|
||
|
|
||
|
int dst_width;
|
||
|
int dst_height;
|
||
|
int dst_pitch;
|
||
|
|
||
|
int batch;
|
||
|
int device; // cuda device ID
|
||
|
|
||
|
char *input_nv12_file;
|
||
|
|
||
|
int ctx_pitch; // the value will be suitable for Texture memroy.
|
||
|
int ctx_heights; // the value will be even.
|
||
|
|
||
|
} nv12_to_bgr24_context;
|
||
|
|
||
|
nv12_to_bgr24_context g_ctx;
|
||
|
|
||
|
static void printHelp(const char *app_name) {
|
||
|
std::cout << "Usage:" << app_name << " [options]\n\n";
|
||
|
std::cout << "OPTIONS:\n";
|
||
|
std::cout << "\t-h,--help\n\n";
|
||
|
std::cout << "\t-input=nv12file nv12 input file\n";
|
||
|
std::cout
|
||
|
<< "\t-width=width input nv12 image width, <1 -- 4096>\n";
|
||
|
std::cout
|
||
|
<< "\t-height=height input nv12 image height, <1 -- 4096>\n";
|
||
|
std::cout
|
||
|
<< "\t-pitch=pitch(optional) input nv12 image pitch, <0 -- 4096>\n";
|
||
|
std::cout
|
||
|
<< "\t-dst_width=width output BGR image width, <1 -- 4096>\n";
|
||
|
std::cout
|
||
|
<< "\t-dst_height=height output BGR image height, <1 -- 4096>\n";
|
||
|
std::cout
|
||
|
<< "\t-dst_pitch=pitch(optional) output BGR image pitch, <0 -- 4096>\n";
|
||
|
std::cout
|
||
|
<< "\t-batch=batch process frames count, <1 -- 4096>\n\n";
|
||
|
std::cout
|
||
|
<< "\t-device=device_num(optional) cuda device number, <0 -- 4096>\n\n";
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
int parseCmdLine(int argc, char *argv[]) {
|
||
|
char **argp = (char **)argv;
|
||
|
char *arg = (char *)argv[0];
|
||
|
|
||
|
memset(&g_ctx, 0, sizeof(g_ctx));
|
||
|
|
||
|
if ((arg && (!strcmp(arg, "-h") || !strcmp(arg, "--help")))) {
|
||
|
printHelp(argv[0]);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (argc == 1) {
|
||
|
// Run using default arguments
|
||
|
|
||
|
g_ctx.input_nv12_file = sdkFindFilePath("test1920x1080.nv12", argv[0]);
|
||
|
if (g_ctx.input_nv12_file == NULL) {
|
||
|
printf("Cannot find input file test1920x1080.nv12\n Exiting\n");
|
||
|
return EXIT_FAILURE;
|
||
|
}
|
||
|
g_ctx.width = 1920;
|
||
|
g_ctx.height = 1080;
|
||
|
g_ctx.dst_width = 640;
|
||
|
g_ctx.dst_height = 480;
|
||
|
g_ctx.batch = 24;
|
||
|
} else if (argc > 1) {
|
||
|
if (checkCmdLineFlag(argc, (const char **)argv, "width")) {
|
||
|
g_ctx.width = getCmdLineArgumentInt(argc, (const char **)argv, "width");
|
||
|
}
|
||
|
|
||
|
if (checkCmdLineFlag(argc, (const char **)argv, "height")) {
|
||
|
g_ctx.height = getCmdLineArgumentInt(argc, (const char **)argv, "height");
|
||
|
}
|
||
|
|
||
|
if (checkCmdLineFlag(argc, (const char **)argv, "pitch")) {
|
||
|
g_ctx.pitch = getCmdLineArgumentInt(argc, (const char **)argv, "pitch");
|
||
|
}
|
||
|
|
||
|
if (checkCmdLineFlag(argc, (const char **)argv, "input")) {
|
||
|
getCmdLineArgumentString(argc, (const char **)argv, "input",
|
||
|
(char **)&g_ctx.input_nv12_file);
|
||
|
}
|
||
|
|
||
|
if (checkCmdLineFlag(argc, (const char **)argv, "dst_width")) {
|
||
|
g_ctx.dst_width =
|
||
|
getCmdLineArgumentInt(argc, (const char **)argv, "dst_width");
|
||
|
}
|
||
|
|
||
|
if (checkCmdLineFlag(argc, (const char **)argv, "dst_height")) {
|
||
|
g_ctx.dst_height =
|
||
|
getCmdLineArgumentInt(argc, (const char **)argv, "dst_height");
|
||
|
}
|
||
|
|
||
|
if (checkCmdLineFlag(argc, (const char **)argv, "dst_pitch")) {
|
||
|
g_ctx.dst_pitch =
|
||
|
getCmdLineArgumentInt(argc, (const char **)argv, "dst_pitch");
|
||
|
}
|
||
|
|
||
|
if (checkCmdLineFlag(argc, (const char **)argv, "batch")) {
|
||
|
g_ctx.batch = getCmdLineArgumentInt(argc, (const char **)argv, "batch");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
g_ctx.device = findCudaDevice(argc, (const char **)argv);
|
||
|
|
||
|
if ((g_ctx.width == 0) || (g_ctx.height == 0) || (g_ctx.dst_width == 0) ||
|
||
|
(g_ctx.dst_height == 0) || !g_ctx.input_nv12_file) {
|
||
|
printHelp(argv[0]);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (g_ctx.pitch == 0) g_ctx.pitch = g_ctx.width;
|
||
|
if (g_ctx.dst_pitch == 0) g_ctx.dst_pitch = g_ctx.dst_width;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
load nv12 yuvfile data into GPU device memory with batch of copy
|
||
|
*/
|
||
|
static int loadNV12Frame(unsigned char *d_inputNV12) {
|
||
|
unsigned char *pNV12FrameData;
|
||
|
unsigned char *d_nv12;
|
||
|
int frameSize;
|
||
|
std::ifstream nv12File(g_ctx.input_nv12_file, std::ifstream::in | std::ios::binary);
|
||
|
|
||
|
if (!nv12File.is_open()) {
|
||
|
std::cerr << "Can't open files\n";
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
frameSize = g_ctx.pitch * g_ctx.ctx_heights;
|
||
|
|
||
|
#if USE_UVM_MEM
|
||
|
pNV12FrameData = d_inputNV12;
|
||
|
#else
|
||
|
pNV12FrameData = (unsigned char *)malloc(frameSize);
|
||
|
if (pNV12FrameData == NULL) {
|
||
|
std::cerr << "Failed to malloc pNV12FrameData\n";
|
||
|
return -1;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
nv12File.read((char *)pNV12FrameData, frameSize);
|
||
|
|
||
|
if (nv12File.gcount() < frameSize) {
|
||
|
std::cerr << "can't get one frame!\n";
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
#if USE_UVM_MEM
|
||
|
// Prefetch to GPU for following GPU operation
|
||
|
cudaStreamAttachMemAsync(NULL, pNV12FrameData, 0, cudaMemAttachGlobal);
|
||
|
#endif
|
||
|
|
||
|
// expand one frame to multi frames for batch processing
|
||
|
d_nv12 = d_inputNV12;
|
||
|
for (int i = 0; i < g_ctx.batch; i++) {
|
||
|
checkCudaErrors(cudaMemcpy2D((void *)d_nv12, g_ctx.ctx_pitch,
|
||
|
pNV12FrameData, g_ctx.width, g_ctx.width,
|
||
|
g_ctx.ctx_heights, cudaMemcpyHostToDevice));
|
||
|
|
||
|
d_nv12 += g_ctx.ctx_pitch * g_ctx.ctx_heights;
|
||
|
}
|
||
|
|
||
|
#if (USE_UVM_MEM == 0)
|
||
|
free(pNV12FrameData);
|
||
|
#endif
|
||
|
nv12File.close();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
1. resize interlace nv12 to target size
|
||
|
2. convert nv12 to bgr 3 progressive planars
|
||
|
*/
|
||
|
void nv12ResizeAndNV12ToBGR(unsigned char *d_inputNV12) {
|
||
|
unsigned char *d_resizedNV12;
|
||
|
float *d_outputBGR;
|
||
|
int size;
|
||
|
char filename[40];
|
||
|
|
||
|
/* allocate device memory for resized nv12 output */
|
||
|
size = g_ctx.dst_width * ceil(g_ctx.dst_height * 3.0f / 2.0f) * g_ctx.batch *
|
||
|
sizeof(unsigned char);
|
||
|
checkCudaErrors(cudaMalloc((void **)&d_resizedNV12, size));
|
||
|
|
||
|
/* allocate device memory for bgr output */
|
||
|
size = g_ctx.dst_pitch * g_ctx.dst_height * 3 * g_ctx.batch * sizeof(float);
|
||
|
checkCudaErrors(cudaMalloc((void **)&d_outputBGR, size));
|
||
|
|
||
|
cudaStream_t stream;
|
||
|
checkCudaErrors(cudaStreamCreate(&stream));
|
||
|
/* create cuda event handles */
|
||
|
cudaEvent_t start, stop;
|
||
|
checkCudaErrors(cudaEventCreate(&start));
|
||
|
checkCudaErrors(cudaEventCreate(&stop));
|
||
|
float elapsedTime = 0.0f;
|
||
|
|
||
|
/* resize interlace nv12 */
|
||
|
|
||
|
cudaEventRecord(start, 0);
|
||
|
for (int i = 0; i < TEST_LOOP; i++) {
|
||
|
resizeNV12Batch(d_inputNV12, g_ctx.ctx_pitch, g_ctx.width, g_ctx.height,
|
||
|
d_resizedNV12, g_ctx.dst_width, g_ctx.dst_width,
|
||
|
g_ctx.dst_height, g_ctx.batch);
|
||
|
}
|
||
|
cudaEventRecord(stop, 0);
|
||
|
cudaEventSynchronize(stop);
|
||
|
|
||
|
cudaEventElapsedTime(&elapsedTime, start, stop);
|
||
|
printf(
|
||
|
" CUDA resize nv12(%dx%d --> %dx%d), batch: %d,"
|
||
|
" average time: %.3f ms ==> %.3f ms/frame\n",
|
||
|
g_ctx.width, g_ctx.height, g_ctx.dst_width, g_ctx.dst_height, g_ctx.batch,
|
||
|
(elapsedTime / (TEST_LOOP * 1.0f)),
|
||
|
(elapsedTime / (TEST_LOOP * 1.0f)) / g_ctx.batch);
|
||
|
|
||
|
sprintf(filename, "resized_nv12_%dx%d", g_ctx.dst_width, g_ctx.dst_height);
|
||
|
|
||
|
/* convert nv12 to bgr 3 progressive planars */
|
||
|
cudaEventRecord(start, 0);
|
||
|
for (int i = 0; i < TEST_LOOP; i++) {
|
||
|
nv12ToBGRplanarBatch(d_resizedNV12, g_ctx.dst_pitch, // intput
|
||
|
d_outputBGR,
|
||
|
g_ctx.dst_pitch * sizeof(float), // output
|
||
|
g_ctx.dst_width, g_ctx.dst_height, // output
|
||
|
g_ctx.batch, 0);
|
||
|
}
|
||
|
cudaEventRecord(stop, 0);
|
||
|
cudaEventSynchronize(stop);
|
||
|
|
||
|
cudaEventElapsedTime(&elapsedTime, start, stop);
|
||
|
|
||
|
printf(
|
||
|
" CUDA convert nv12(%dx%d) to bgr(%dx%d), batch: %d,"
|
||
|
" average time: %.3f ms ==> %.3f ms/frame\n",
|
||
|
g_ctx.dst_width, g_ctx.dst_height, g_ctx.dst_width, g_ctx.dst_height,
|
||
|
g_ctx.batch, (elapsedTime / (TEST_LOOP * 1.0f)),
|
||
|
(elapsedTime / (TEST_LOOP * 1.0f)) / g_ctx.batch);
|
||
|
|
||
|
sprintf(filename, "converted_bgr_%dx%d", g_ctx.dst_width, g_ctx.dst_height);
|
||
|
dumpBGR(d_outputBGR, g_ctx.dst_pitch, g_ctx.dst_width, g_ctx.dst_height,
|
||
|
g_ctx.batch, (char *)"t1", filename);
|
||
|
|
||
|
/* release resources */
|
||
|
checkCudaErrors(cudaEventDestroy(start));
|
||
|
checkCudaErrors(cudaEventDestroy(stop));
|
||
|
checkCudaErrors(cudaStreamDestroy(stream));
|
||
|
checkCudaErrors(cudaFree(d_resizedNV12));
|
||
|
checkCudaErrors(cudaFree(d_outputBGR));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
1. convert nv12 to bgr 3 progressive planars
|
||
|
2. resize bgr 3 planars to target size
|
||
|
*/
|
||
|
void nv12ToBGRandBGRresize(unsigned char *d_inputNV12) {
|
||
|
float *d_bgr;
|
||
|
float *d_resizedBGR;
|
||
|
int size;
|
||
|
char filename[40];
|
||
|
|
||
|
/* allocate device memory for bgr output */
|
||
|
size = g_ctx.ctx_pitch * g_ctx.height * 3 * g_ctx.batch * sizeof(float);
|
||
|
checkCudaErrors(cudaMalloc((void **)&d_bgr, size));
|
||
|
|
||
|
/* allocate device memory for resized bgr output */
|
||
|
size = g_ctx.dst_width * g_ctx.dst_height * 3 * g_ctx.batch * sizeof(float);
|
||
|
checkCudaErrors(cudaMalloc((void **)&d_resizedBGR, size));
|
||
|
|
||
|
cudaStream_t stream;
|
||
|
checkCudaErrors(cudaStreamCreate(&stream));
|
||
|
/* create cuda event handles */
|
||
|
cudaEvent_t start, stop;
|
||
|
checkCudaErrors(cudaEventCreate(&start));
|
||
|
checkCudaErrors(cudaEventCreate(&stop));
|
||
|
float elapsedTime = 0.0f;
|
||
|
|
||
|
/* convert interlace nv12 to bgr 3 progressive planars */
|
||
|
cudaEventRecord(start, 0);
|
||
|
cudaDeviceSynchronize();
|
||
|
for (int i = 0; i < TEST_LOOP; i++) {
|
||
|
nv12ToBGRplanarBatch(d_inputNV12, g_ctx.ctx_pitch, d_bgr,
|
||
|
g_ctx.ctx_pitch * sizeof(float), g_ctx.width,
|
||
|
g_ctx.height, g_ctx.batch, 0);
|
||
|
}
|
||
|
cudaEventRecord(stop, 0);
|
||
|
cudaEventSynchronize(stop);
|
||
|
|
||
|
cudaEventElapsedTime(&elapsedTime, start, stop);
|
||
|
printf(
|
||
|
" CUDA convert nv12(%dx%d) to bgr(%dx%d), batch: %d,"
|
||
|
" average time: %.3f ms ==> %.3f ms/frame\n",
|
||
|
g_ctx.width, g_ctx.height, g_ctx.width, g_ctx.height, g_ctx.batch,
|
||
|
(elapsedTime / (TEST_LOOP * 1.0f)),
|
||
|
(elapsedTime / (TEST_LOOP * 1.0f)) / g_ctx.batch);
|
||
|
|
||
|
sprintf(filename, "converted_bgr_%dx%d", g_ctx.width, g_ctx.height);
|
||
|
|
||
|
/* resize bgr 3 progressive planars */
|
||
|
cudaEventRecord(start, 0);
|
||
|
for (int i = 0; i < TEST_LOOP; i++) {
|
||
|
resizeBGRplanarBatch(d_bgr, g_ctx.ctx_pitch, g_ctx.width, g_ctx.height,
|
||
|
d_resizedBGR, g_ctx.dst_width, g_ctx.dst_width,
|
||
|
g_ctx.dst_height, g_ctx.batch);
|
||
|
}
|
||
|
cudaEventRecord(stop, 0);
|
||
|
cudaEventSynchronize(stop);
|
||
|
|
||
|
cudaEventElapsedTime(&elapsedTime, start, stop);
|
||
|
printf(
|
||
|
" CUDA resize bgr(%dx%d --> %dx%d), batch: %d,"
|
||
|
" average time: %.3f ms ==> %.3f ms/frame\n",
|
||
|
g_ctx.width, g_ctx.height, g_ctx.dst_width, g_ctx.dst_height, g_ctx.batch,
|
||
|
(elapsedTime / (TEST_LOOP * 1.0f)),
|
||
|
(elapsedTime / (TEST_LOOP * 1.0f)) / g_ctx.batch);
|
||
|
|
||
|
memset(filename, 0, sizeof(filename));
|
||
|
sprintf(filename, "resized_bgr_%dx%d", g_ctx.dst_width, g_ctx.dst_height);
|
||
|
dumpBGR(d_resizedBGR, g_ctx.dst_pitch, g_ctx.dst_width, g_ctx.dst_height,
|
||
|
g_ctx.batch, (char *)"t2", filename);
|
||
|
|
||
|
/* release resources */
|
||
|
checkCudaErrors(cudaEventDestroy(start));
|
||
|
checkCudaErrors(cudaEventDestroy(stop));
|
||
|
checkCudaErrors(cudaStreamDestroy(stream));
|
||
|
checkCudaErrors(cudaFree(d_bgr));
|
||
|
checkCudaErrors(cudaFree(d_resizedBGR));
|
||
|
}
|
||
|
|
||
|
int main(int argc, char *argv[]) {
|
||
|
unsigned char *d_inputNV12;
|
||
|
|
||
|
if (parseCmdLine(argc, argv) < 0) return EXIT_FAILURE;
|
||
|
|
||
|
g_ctx.ctx_pitch = g_ctx.width;
|
||
|
int ctx_alignment = 32;
|
||
|
g_ctx.ctx_pitch += (g_ctx.ctx_pitch % ctx_alignment != 0)
|
||
|
? (ctx_alignment - g_ctx.ctx_pitch % ctx_alignment)
|
||
|
: 0;
|
||
|
|
||
|
g_ctx.ctx_heights = ceil(g_ctx.height * 3.0f / 2.0f);
|
||
|
|
||
|
/* load nv12 yuv data into d_inputNV12 with batch of copies */
|
||
|
#if USE_UVM_MEM
|
||
|
checkCudaErrors(cudaMallocManaged(
|
||
|
(void **)&d_inputNV12,
|
||
|
(g_ctx.ctx_pitch * g_ctx.ctx_heights * g_ctx.batch), cudaMemAttachHost));
|
||
|
printf("\nUSE_UVM_MEM\n");
|
||
|
#else
|
||
|
checkCudaErrors(
|
||
|
cudaMalloc((void **)&d_inputNV12,
|
||
|
(g_ctx.ctx_pitch * g_ctx.ctx_heights * g_ctx.batch)));
|
||
|
#endif
|
||
|
if (loadNV12Frame(d_inputNV12)) {
|
||
|
std::cerr << "failed to load batch data!\n";
|
||
|
return EXIT_FAILURE;
|
||
|
}
|
||
|
|
||
|
/* firstly resize nv12, then convert nv12 to bgr */
|
||
|
printf("\nTEST#1:\n");
|
||
|
nv12ResizeAndNV12ToBGR(d_inputNV12);
|
||
|
|
||
|
/* first convert nv12 to bgr, then resize bgr */
|
||
|
printf("\nTEST#2:\n");
|
||
|
nv12ToBGRandBGRresize(d_inputNV12);
|
||
|
|
||
|
checkCudaErrors(cudaFree(d_inputNV12));
|
||
|
|
||
|
return EXIT_SUCCESS;
|
||
|
}
|