cuda-samples/Samples/2_Concepts_and_Techniques/eigenvalues/bisect_large.cuh

83 lines
4.1 KiB
Plaintext
Raw Normal View History

2022-01-13 14:05:24 +08:00
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2021-10-21 19:04:49 +08:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Computation of eigenvalues of a small bidiagonal matrix */
#ifndef _BISECT_LARGE_CUH_
#define _BISECT_LARGE_CUH_
extern "C" {
////////////////////////////////////////////////////////////////////////////////
//! Run the kernels to compute the eigenvalues for large matrices
//! @param input handles to input data
//! @param result handles to result data
//! @param mat_size matrix size
//! @param precision desired precision of eigenvalues
//! @param lg lower limit of Gerschgorin interval
//! @param ug upper limit of Gerschgorin interval
//! @param iterations number of iterations (for timing)
////////////////////////////////////////////////////////////////////////////////
void computeEigenvaluesLargeMatrix(const InputData &input,
const ResultDataLarge &result,
const unsigned int mat_size,
const float precision, const float lg,
const float ug,
const unsigned int iterations);
////////////////////////////////////////////////////////////////////////////////
//! Initialize variables and memory for result
//! @param result handles to memory
//! @param matr_size size of the matrix
////////////////////////////////////////////////////////////////////////////////
void initResultDataLargeMatrix(ResultDataLarge &result,
const unsigned int mat_size);
////////////////////////////////////////////////////////////////////////////////
//! Cleanup result memory
//! @param result handles to memory
////////////////////////////////////////////////////////////////////////////////
void cleanupResultDataLargeMatrix(ResultDataLarge &result);
////////////////////////////////////////////////////////////////////////////////
//! Process the result, that is obtain result from device and do simple sanity
//! checking
//! @param input handles to input data
//! @param result handles to result data
//! @param mat_size matrix size
//! @param filename output filename
////////////////////////////////////////////////////////////////////////////////
bool processResultDataLargeMatrix(const InputData &input,
const ResultDataLarge &result,
const unsigned int mat_size,
const char *filename,
const unsigned int user_defined,
char *exec_path);
};
#endif // #ifndef _BISECT_LARGE_CUH_