cuda-samples/Samples/simpleAWBarrier/simpleAWBarrier.cu

264 lines
8.7 KiB
Plaintext
Raw Normal View History

/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Includes, system
#include <stdio.h>
// Includes CUDA
#include <cuda_runtime.h>
#include <cuda/barrier>
#include <cooperative_groups.h>
// Utilities and timing functions
#include <helper_functions.h> // includes cuda.h and cuda_runtime_api.h
// CUDA helper functions
#include <helper_cuda.h> // helper functions for CUDA error check
namespace cg = cooperative_groups;
#if __CUDA_ARCH__ >= 700
template <bool writeSquareRoot> __device__ void reduceBlockData(cuda::barrier<cuda::thread_scope_block> &barrier,
cg::thread_block_tile<32> &tile32, double &threadSum, double *result)
{
extern __shared__ double tmp[];
#pragma unroll
for (int offset = tile32.size()/2; offset > 0; offset /= 2)
{
threadSum += tile32.shfl_down(threadSum, offset);
}
if (tile32.thread_rank() == 0)
{
tmp[tile32.meta_group_rank()] = threadSum;
}
auto token = barrier.arrive();
barrier.wait(std::move(token));
// The warp 0 will perform last round of reduction
if (tile32.meta_group_rank() == 0) {
double beta = tile32.thread_rank() < tile32.meta_group_size() ? tmp[tile32.thread_rank()] : 0.0;
#pragma unroll
for (int offset = tile32.size()/2; offset > 0; offset /= 2)
{
beta += tile32.shfl_down(beta, offset);
}
if (tile32.thread_rank() == 0)
{
if (writeSquareRoot)
*result = sqrt(beta);
else
*result = beta;
}
}
}
#endif
__global__ void normVecByDotProductAWBarrier(float *vecA, float *vecB, double *partialResults, int size)
{
#if __CUDA_ARCH__ >= 700
#pragma diag_suppress static_var_with_dynamic_init
cg::thread_block cta = cg::this_thread_block();
cg::grid_group grid = cg::this_grid();;
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
__shared__ cuda::barrier<cuda::thread_scope_block> barrier;
if (threadIdx.x == 0) {
init(&barrier, blockDim.x);
}
cg::sync(cta);
double threadSum = 0.0;
for (int i = grid.thread_rank(); i < size; i += grid.size())
{
threadSum += (double) (vecA[i] * vecB[i]);
}
// Each thread block performs reduction of partial dotProducts and writes to
// global mem.
reduceBlockData<false>(barrier, tile32, threadSum, &partialResults[blockIdx.x]);
cg::sync(grid);
// One block performs the final summation of partial dot products
// of all the thread blocks and writes the sqrt of final dot product.
if (blockIdx.x == 0)
{
threadSum = 0.0;
for (int i = cta.thread_rank(); i < gridDim.x; i += cta.size())
{
threadSum += partialResults[i];
}
reduceBlockData<true>(barrier, tile32, threadSum, &partialResults[0]);
}
cg::sync(grid);
const double finalValue = partialResults[0];
// Perform normalization of vecA & vecB.
for (int i = grid.thread_rank(); i < size; i += grid.size())
{
vecA[i] = (float)vecA[i] / finalValue;
vecB[i] = (float)vecB[i] / finalValue;
}
#endif
}
int runNormVecByDotProductAWBarrier(int argc, char **argv, int deviceId);
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
printf("%s starting...\n", argv[0]);
// This will pick the best possible CUDA capable device
int dev = findCudaDevice(argc, (const char **)argv);
int major = 0;
checkCudaErrors(cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, dev));
// Arrive-Wait Barrier require a GPU of Volta (SM7X) architecture or higher.
if (major < 7) {
printf("simpleAWBarrier requires SM 7.0 or higher. Exiting...\n");
exit(EXIT_WAIVED);
}
int supportsCooperativeLaunch = 0;
checkCudaErrors(cudaDeviceGetAttribute(&supportsCooperativeLaunch, cudaDevAttrCooperativeLaunch, dev));
if (!supportsCooperativeLaunch)
{
printf("\nSelected GPU (%d) does not support Cooperative Kernel Launch, Waiving the run\n", dev);
exit(EXIT_WAIVED);
}
int testResult = runNormVecByDotProductAWBarrier(argc, argv, dev);
printf("%s completed, returned %s\n", argv[0], testResult ? "OK" : "ERROR!");
exit(testResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
int runNormVecByDotProductAWBarrier(int argc, char **argv, int deviceId)
{
float *vecA, *d_vecA;
float *vecB, *d_vecB;
double *d_partialResults;
int size = 10000000;
vecA = new float[size];
vecB = new float[size];
checkCudaErrors(cudaMalloc(&d_vecA, sizeof(float)*size));
checkCudaErrors(cudaMalloc(&d_vecB, sizeof(float)*size));
float baseVal = 2.0;
for (int i = 0; i < size; i++)
{
vecA[i] = vecB[i] = baseVal;
}
cudaStream_t stream;
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
checkCudaErrors(cudaMemcpyAsync(d_vecA, vecA, sizeof(float)*size, cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemcpyAsync(d_vecB, vecB, sizeof(float)*size, cudaMemcpyHostToDevice, stream));
// Kernel configuration, where a one-dimensional
// grid and one-dimensional blocks are configured.
int minGridSize = 0, blockSize = 0;
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(
&minGridSize,
&blockSize,
(void*)normVecByDotProductAWBarrier,
0,
size));
int smemSize = ((blockSize/32)+1) * sizeof(double);
int numBlocksPerSm = 0;
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, normVecByDotProductAWBarrier, blockSize, smemSize));
int multiProcessorCount = 0;
checkCudaErrors(cudaDeviceGetAttribute(&multiProcessorCount, cudaDevAttrMultiProcessorCount, deviceId));
minGridSize = multiProcessorCount * numBlocksPerSm;
checkCudaErrors(cudaMalloc(&d_partialResults, minGridSize*sizeof(double)));
printf("Launching normVecByDotProductAWBarrier kernel with numBlocks = %d blockSize = %d\n", minGridSize, blockSize);
dim3 dimGrid(minGridSize, 1, 1), dimBlock(blockSize, 1, 1);
void *kernelArgs[] = {
(void*)&d_vecA,
(void*)&d_vecB,
(void*)&d_partialResults,
(void*)&size
};
checkCudaErrors(cudaLaunchCooperativeKernel((void *)normVecByDotProductAWBarrier, dimGrid, dimBlock, kernelArgs, smemSize, stream));
checkCudaErrors(cudaMemcpyAsync(vecA, d_vecA, sizeof(float)*size, cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaStreamSynchronize(stream));
float expectedResult = (baseVal / sqrt(size*baseVal*baseVal));
unsigned int matches = 0;
for (int i=0; i < size; i++)
{
if ((vecA[i] - expectedResult) > 0.00001)
{
printf("mismatch at i = %d\n", i);
break;
}
else
{
matches++;
}
}
printf("Result = %s\n", matches == size ? "PASSED" : "FAILED");
checkCudaErrors(cudaFree(d_vecA));
checkCudaErrors(cudaFree(d_vecB));
checkCudaErrors(cudaFree(d_partialResults));
delete[] vecA;
delete[] vecB;
return matches == size;
}