mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-25 00:09:16 +08:00
276 lines
12 KiB
Plaintext
276 lines
12 KiB
Plaintext
|
/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* See: https://www.piday.org/million/
|
||
|
*/
|
||
|
|
||
|
#include "MonteCarloPi.h"
|
||
|
#include <algorithm>
|
||
|
#define CUDA_DRIVER_API
|
||
|
#include <helper_cuda.h>
|
||
|
#include <iostream>
|
||
|
|
||
|
#define ROUND_UP_TO_GRANULARITY(x, n) (((x + n - 1) / n) * n)
|
||
|
|
||
|
// `ipcHandleTypeFlag` specifies the platform specific handle type this sample
|
||
|
// uses for importing and exporting memory allocation. On Linux this sample
|
||
|
// specifies the type as CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR meaning that
|
||
|
// file descriptors will be used. On Windows this sample specifies the type as
|
||
|
// CU_MEM_HANDLE_TYPE_WIN32 meaning that NT HANDLEs will be used. The
|
||
|
// ipcHandleTypeFlag variable is a convenience variable and is passed by value
|
||
|
// to individual requests.
|
||
|
#if defined(__linux__)
|
||
|
CUmemAllocationHandleType ipcHandleTypeFlag = CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR;
|
||
|
#else
|
||
|
CUmemAllocationHandleType ipcHandleTypeFlag = CU_MEM_HANDLE_TYPE_WIN32;
|
||
|
#endif
|
||
|
|
||
|
// Windows-specific LPSECURITYATTRIBUTES
|
||
|
void getDefaultSecurityDescriptor(CUmemAllocationProp *prop) {
|
||
|
#if defined(__linux__)
|
||
|
return;
|
||
|
#elif defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
|
static const char sddl[] = "D:P(OA;;GARCSDWDWOCCDCLCSWLODTWPRPCRFA;;;WD)";
|
||
|
static OBJECT_ATTRIBUTES objAttributes;
|
||
|
static bool objAttributesConfigured = false;
|
||
|
|
||
|
if (!objAttributesConfigured) {
|
||
|
PSECURITY_DESCRIPTOR secDesc;
|
||
|
BOOL result = ConvertStringSecurityDescriptorToSecurityDescriptorA(
|
||
|
sddl, SDDL_REVISION_1, &secDesc, NULL);
|
||
|
if (result == 0) {
|
||
|
printf("IPC failure: getDefaultSecurityDescriptor Failed! (%d)\n",
|
||
|
GetLastError());
|
||
|
}
|
||
|
|
||
|
InitializeObjectAttributes(&objAttributes, NULL, 0, NULL, secDesc);
|
||
|
|
||
|
objAttributesConfigured = true;
|
||
|
}
|
||
|
|
||
|
prop->win32HandleMetaData = &objAttributes;
|
||
|
return;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
__global__ void monte_carlo_kernel(vec2 *xyVector, float *pointsInsideCircle, float *numPointsInCircle, unsigned int numPoints, float time)
|
||
|
{
|
||
|
const size_t stride = gridDim.x * blockDim.x;
|
||
|
size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||
|
float count = 0.0f;
|
||
|
|
||
|
curandState rgnState;
|
||
|
curand_init((unsigned long long)time, tid, 0, &rgnState);
|
||
|
|
||
|
for (; tid < numPoints; tid += stride) {
|
||
|
float x = curand_uniform(&rgnState);
|
||
|
float y = curand_uniform(&rgnState);
|
||
|
x = (2.0f * x) - 1.0f;
|
||
|
y = (2.0f * y) - 1.0f;
|
||
|
xyVector[tid][0] = x;
|
||
|
xyVector[tid][1] = y;
|
||
|
|
||
|
// Compute the distance of this point form the center(0, 0)
|
||
|
float dist = sqrtf((x*x) + (y*y));
|
||
|
|
||
|
// If distance is less than the radius of the unit circle, the point lies in the circle.
|
||
|
pointsInsideCircle[tid] = (dist <= 1.0f);
|
||
|
count += (dist <= 1.0f);
|
||
|
}
|
||
|
atomicAdd(numPointsInCircle, count);
|
||
|
}
|
||
|
|
||
|
MonteCarloPiSimulation::MonteCarloPiSimulation(size_t num_points) :
|
||
|
m_xyVector(nullptr),
|
||
|
m_pointsInsideCircle(nullptr),
|
||
|
m_totalPointsInsideCircle(0),
|
||
|
m_totalPointsSimulated(0),
|
||
|
m_numPoints(num_points)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
MonteCarloPiSimulation::~MonteCarloPiSimulation()
|
||
|
{
|
||
|
if (m_numPointsInCircle) {
|
||
|
checkCudaErrors(cudaFree(m_numPointsInCircle));
|
||
|
m_numPointsInCircle = nullptr;
|
||
|
}
|
||
|
if (m_hostNumPointsInCircle) {
|
||
|
checkCudaErrors(cudaFreeHost(m_hostNumPointsInCircle));
|
||
|
m_hostNumPointsInCircle = nullptr;
|
||
|
}
|
||
|
|
||
|
cleanupSimulationAllocations();
|
||
|
}
|
||
|
|
||
|
void MonteCarloPiSimulation::initSimulation(int cudaDevice, cudaStream_t stream)
|
||
|
{
|
||
|
m_cudaDevice = cudaDevice;
|
||
|
getIdealExecutionConfiguration();
|
||
|
|
||
|
// Allocate a position buffer that contains random location of the points in XY cartesian plane.
|
||
|
// Allocate a bitmap buffer which holds information of whether a point in the position buffer is inside the unit circle or not.
|
||
|
setupSimulationAllocations();
|
||
|
|
||
|
checkCudaErrors(cudaMalloc((float **)&m_numPointsInCircle, sizeof(*m_numPointsInCircle)));
|
||
|
checkCudaErrors(cudaMallocHost((float **)&m_hostNumPointsInCircle, sizeof(*m_hostNumPointsInCircle)));
|
||
|
}
|
||
|
|
||
|
void MonteCarloPiSimulation::stepSimulation(float time, cudaStream_t stream)
|
||
|
{
|
||
|
|
||
|
checkCudaErrors(cudaMemsetAsync(m_numPointsInCircle, 0, sizeof(*m_numPointsInCircle), stream));
|
||
|
|
||
|
monte_carlo_kernel << < m_blocks, m_threads, 0, stream >> > (m_xyVector, m_pointsInsideCircle, m_numPointsInCircle, m_numPoints, time);
|
||
|
getLastCudaError("Failed to launch CUDA simulation");
|
||
|
|
||
|
checkCudaErrors(cudaMemcpyAsync(m_hostNumPointsInCircle, m_numPointsInCircle, sizeof(*m_numPointsInCircle), cudaMemcpyDeviceToHost, stream));
|
||
|
|
||
|
// Queue up a stream callback to compute and print the PI value.
|
||
|
checkCudaErrors(cudaLaunchHostFunc(stream, this->computePiCallback, (void *)this));
|
||
|
}
|
||
|
|
||
|
void MonteCarloPiSimulation::computePiCallback(void *args)
|
||
|
{
|
||
|
MonteCarloPiSimulation *cbData = (MonteCarloPiSimulation *)args;
|
||
|
cbData->m_totalPointsInsideCircle += *(cbData->m_hostNumPointsInCircle);
|
||
|
cbData->m_totalPointsSimulated += cbData->m_numPoints;
|
||
|
double piValue = 4.0 * ((double)cbData->m_totalPointsInsideCircle / (double)cbData->m_totalPointsSimulated);
|
||
|
printf("Approximate Pi value for %zd data points: %lf \n", cbData->m_totalPointsSimulated, piValue);
|
||
|
}
|
||
|
|
||
|
void MonteCarloPiSimulation::getIdealExecutionConfiguration()
|
||
|
{
|
||
|
int warpSize = 0;
|
||
|
int multiProcessorCount = 0;
|
||
|
|
||
|
checkCudaErrors(cudaSetDevice(m_cudaDevice));
|
||
|
checkCudaErrors(cudaDeviceGetAttribute(&warpSize, cudaDevAttrWarpSize, m_cudaDevice));
|
||
|
|
||
|
// We don't need large block sizes, since there's not much inter-thread communication
|
||
|
m_threads = warpSize;
|
||
|
|
||
|
// Use the occupancy calculator and fill the gpu as best as we can
|
||
|
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&m_blocks, monte_carlo_kernel, warpSize, 0));
|
||
|
|
||
|
checkCudaErrors(cudaDeviceGetAttribute(&multiProcessorCount, cudaDevAttrMultiProcessorCount, m_cudaDevice));
|
||
|
m_blocks *= multiProcessorCount;
|
||
|
|
||
|
// Go ahead and the clamp the blocks to the minimum needed for this height/width
|
||
|
m_blocks = std::min(m_blocks, (int)((m_numPoints + m_threads - 1) / m_threads));
|
||
|
}
|
||
|
|
||
|
void MonteCarloPiSimulation::setupSimulationAllocations()
|
||
|
{
|
||
|
CUdeviceptr d_ptr = 0U;
|
||
|
size_t granularity = 0;
|
||
|
CUmemGenericAllocationHandle cudaPositionHandle, cudaInCircleHandle;
|
||
|
|
||
|
CUmemAllocationProp allocProp = { };
|
||
|
allocProp.type = CU_MEM_ALLOCATION_TYPE_PINNED;
|
||
|
allocProp.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
|
||
|
allocProp.location.id = m_cudaDevice;
|
||
|
allocProp.win32HandleMetaData = NULL;
|
||
|
allocProp.requestedHandleTypes = ipcHandleTypeFlag;
|
||
|
|
||
|
// Windows-specific LPSECURITYATTRIBUTES is required when
|
||
|
// CU_MEM_HANDLE_TYPE_WIN32 is used. The security attribute defines the scope
|
||
|
// of which exported allocations may be tranferred to other processes. For all
|
||
|
// other handle types, pass NULL.
|
||
|
getDefaultSecurityDescriptor(&allocProp);
|
||
|
|
||
|
// Get the recommended granularity for m_cudaDevice.
|
||
|
checkCudaErrors(cuMemGetAllocationGranularity(&granularity, &allocProp, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
|
||
|
|
||
|
size_t xyPositionVecSize = m_numPoints * sizeof(*m_xyVector);
|
||
|
size_t inCircleVecSize = m_numPoints * sizeof(*m_pointsInsideCircle);
|
||
|
|
||
|
size_t xyPositionSize = ROUND_UP_TO_GRANULARITY(xyPositionVecSize, granularity);
|
||
|
size_t inCircleSize = ROUND_UP_TO_GRANULARITY(inCircleVecSize, granularity);
|
||
|
m_totalAllocationSize = (xyPositionSize + inCircleSize);
|
||
|
|
||
|
// Reserve the required contiguous VA space for the allocations
|
||
|
checkCudaErrors(cuMemAddressReserve(&d_ptr, m_totalAllocationSize, granularity, 0U, 0));
|
||
|
|
||
|
// Create the allocations as a pinned allocation on this device.
|
||
|
// Create an allocation to store all the positions of points on the xy plane and a second
|
||
|
// allocation which stores information if the corresponding position is inside the unit circle or not.
|
||
|
checkCudaErrors(cuMemCreate(&cudaPositionHandle, xyPositionSize, &allocProp, 0));
|
||
|
checkCudaErrors(cuMemCreate(&cudaInCircleHandle, inCircleSize, &allocProp, 0));
|
||
|
|
||
|
// Export the allocation to a platform-specific handle. The type of handle
|
||
|
// requested here must match the requestedHandleTypes field in the prop
|
||
|
// structure passed to cuMemCreate. The handle obtained here will be passed to vulkan
|
||
|
// to import the allocation.
|
||
|
checkCudaErrors(cuMemExportToShareableHandle((void *)&m_posShareableHandle, cudaPositionHandle, ipcHandleTypeFlag, 0));
|
||
|
checkCudaErrors(cuMemExportToShareableHandle((void *)&m_inCircleShareableHandle, cudaInCircleHandle, ipcHandleTypeFlag, 0));
|
||
|
|
||
|
CUdeviceptr va_position = d_ptr;
|
||
|
CUdeviceptr va_InCircle = va_position + xyPositionSize;
|
||
|
m_pointsInsideCircle = (float *)va_InCircle;
|
||
|
m_xyVector = (vec2 *)va_position;
|
||
|
|
||
|
// Assign the chunk to the appropriate VA range
|
||
|
checkCudaErrors(cuMemMap(va_position, xyPositionSize, 0, cudaPositionHandle, 0));
|
||
|
checkCudaErrors(cuMemMap(va_InCircle, inCircleSize, 0, cudaInCircleHandle, 0));
|
||
|
|
||
|
// Release the handles for the allocation. Since the allocation is currently mapped to a VA range
|
||
|
// with a previous call to cuMemMap the actual freeing of memory allocation will happen on an eventual call to
|
||
|
// cuMemUnmap. Thus the allocation will be kept live until it is unmapped.
|
||
|
checkCudaErrors(cuMemRelease(cudaPositionHandle));
|
||
|
checkCudaErrors(cuMemRelease(cudaInCircleHandle));
|
||
|
|
||
|
CUmemAccessDesc accessDescriptor = {};
|
||
|
accessDescriptor.location.id = m_cudaDevice;
|
||
|
accessDescriptor.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
|
||
|
accessDescriptor.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
|
||
|
|
||
|
// Apply the access descriptor to the whole VA range. Essentially enables Read-Write access to the range.
|
||
|
checkCudaErrors(cuMemSetAccess(d_ptr, m_totalAllocationSize, &accessDescriptor, 1));
|
||
|
}
|
||
|
|
||
|
void MonteCarloPiSimulation::cleanupSimulationAllocations()
|
||
|
{
|
||
|
if (m_xyVector && m_pointsInsideCircle) {
|
||
|
// Unmap the mapped virtual memory region
|
||
|
// Since the handles to the mapped backing stores have already been released
|
||
|
// by cuMemRelease, and these are the only/last mappings referencing them,
|
||
|
// The backing stores will be freed.
|
||
|
checkCudaErrors(cuMemUnmap((CUdeviceptr)m_xyVector, m_totalAllocationSize));
|
||
|
|
||
|
checkIpcErrors(ipcCloseShareableHandle(m_posShareableHandle));
|
||
|
checkIpcErrors(ipcCloseShareableHandle(m_inCircleShareableHandle));
|
||
|
|
||
|
// Free the virtual address region.
|
||
|
checkCudaErrors(cuMemAddressFree((CUdeviceptr)m_xyVector, m_totalAllocationSize));
|
||
|
|
||
|
m_xyVector = nullptr;
|
||
|
m_pointsInsideCircle = nullptr;
|
||
|
}
|
||
|
}
|