cuda-samples/Samples/simpleCUFFT_2d_MGPU/simpleCUFFT_2d_MGPU.cu

381 lines
12 KiB
Plaintext
Raw Normal View History

2021-10-21 19:04:49 +08:00
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
////////////////////////////////////////////////////////////////////////////////
//
// simpleCUFFT_2d_MGPU.cu
//
// This sample code demonstrate the use of CUFFT library for 2D data on multiple GPU.
// Example showing the use of CUFFT for solving 2D-POISSON equation using FFT on multiple GPU.
// For reference we have used the equation given in http://www.bu.edu/pasi/files/2011/07/
// Lecture83.pdf
//
////////////////////////////////////////////////////////////////////////////////
// System includes
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// CUDA runtime
#include <cuda_runtime.h>
//CUFFT Header file
#include <cufftXt.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
// Complex data type
typedef float2 Complex;
// Data configuration
const int GPU_COUNT = 2;
const int BSZ_Y = 4;
const int BSZ_X = 4;
// Forward Declaration
void solvePoissonEquation(cudaLibXtDesc *, cudaLibXtDesc *, float **, int, int);
__global__ void solvePoisson(cufftComplex *, cufftComplex *, float *, int, int,
int n_gpu);
///////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf(
"\nPoisson equation using CUFFT library on Multiple GPUs is "
"starting...\n\n");
int GPU_N;
checkCudaErrors(cudaGetDeviceCount(&GPU_N));
if (GPU_N < GPU_COUNT) {
printf("No. of GPU on node %d\n", GPU_N);
printf("Two GPUs are required to run simpleCUFFT_2d_MGPU sample code\n");
exit(EXIT_WAIVED);
}
int *major_minor = (int *)malloc(sizeof(int) * GPU_N * 2);
int found2IdenticalGPUs = 0;
int nGPUs = 2;
int *whichGPUs;
whichGPUs = (int *)malloc(sizeof(int) * nGPUs);
for (int i = 0; i < GPU_N; i++) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));
major_minor[i * 2] = deviceProp.major;
major_minor[i * 2 + 1] = deviceProp.minor;
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n", i,
deviceProp.name, deviceProp.major, deviceProp.minor);
}
for (int i = 0; i < GPU_N; i++) {
for (int j = i + 1; j < GPU_N; j++) {
if ((major_minor[i * 2] == major_minor[j * 2]) &&
(major_minor[i * 2 + 1] == major_minor[j * 2 + 1])) {
whichGPUs[0] = i;
whichGPUs[1] = j;
found2IdenticalGPUs = 1;
break;
}
}
if (found2IdenticalGPUs) {
break;
}
}
free(major_minor);
if (!found2IdenticalGPUs) {
printf(
"No Two GPUs with same architecture found\nWaiving simpleCUFFT_2d_MGPU "
"sample\n");
exit(EXIT_WAIVED);
}
int N = 64;
float xMAX = 1.0f, xMIN = 0.0f, yMIN = 0.0f, h = (xMAX - xMIN) / ((float)N),
s = 0.1f, s2 = s * s;
float *x, *y, *f, *u_a, r2;
x = (float *)malloc(sizeof(float) * N * N);
y = (float *)malloc(sizeof(float) * N * N);
f = (float *)malloc(sizeof(float) * N * N);
u_a = (float *)malloc(sizeof(float) * N * N);
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++) {
x[N * j + i] = xMIN + i * h;
y[N * j + i] = yMIN + j * h;
r2 = (x[N * j + i] - 0.5f) * (x[N * j + i] - 0.5f) +
(y[N * j + i] - 0.5f) * (y[N * j + i] - 0.5f);
f[N * j + i] = (r2 - 2 * s2) / (s2 * s2) * exp(-r2 / (2 * s2));
u_a[N * j + i] = exp(-r2 / (2 * s2)); // analytical solution
}
float *k, *d_k[GPU_COUNT];
k = (float *)malloc(sizeof(float) * N);
for (int i = 0; i <= N / 2; i++) {
k[i] = i * 2 * (float)M_PI;
}
for (int i = N / 2 + 1; i < N; i++) {
k[i] = (i - N) * 2 * (float)M_PI;
}
// Create a complex variable on host
Complex *h_f = (Complex *)malloc(sizeof(Complex) * N * N);
// Initialize the memory for the signal
for (int i = 0; i < (N * N); i++) {
h_f[i].x = f[i];
h_f[i].y = 0.0f;
}
// cufftCreate() - Create an empty plan
cufftResult result;
cufftHandle planComplex;
result = cufftCreate(&planComplex);
if (result != CUFFT_SUCCESS) {
printf("cufftCreate failed\n");
exit(EXIT_FAILURE);
}
// cufftXtSetGPUs() - Define which GPUs to use
result = cufftXtSetGPUs(planComplex, nGPUs, whichGPUs);
if (result == CUFFT_INVALID_DEVICE) {
printf("This sample requires two GPUs on the same board.\n");
printf("No such board was found. Waiving sample.\n");
exit(EXIT_WAIVED);
} else if (result != CUFFT_SUCCESS) {
printf("cufftXtSetGPUs failed\n");
exit(EXIT_FAILURE);
}
// Print the device information to run the code
printf("\nRunning on GPUs\n");
for (int i = 0; i < 2; i++) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, whichGPUs[i]));
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n",
whichGPUs[i], deviceProp.name, deviceProp.major, deviceProp.minor);
}
size_t *worksize;
worksize = (size_t *)malloc(sizeof(size_t) * nGPUs);
// cufftMakePlan2d() - Create the plan
result = cufftMakePlan2d(planComplex, N, N, CUFFT_C2C, worksize);
if (result != CUFFT_SUCCESS) {
printf("*MakePlan* failed\n");
exit(EXIT_FAILURE);
}
for (int i = 0; i < nGPUs; i++) {
cudaSetDevice(whichGPUs[i]);
cudaMalloc((void **)&d_k[i], sizeof(float) * N);
cudaMemcpy(d_k[i], k, sizeof(float) * N, cudaMemcpyHostToDevice);
}
// Create a variable on device
// d_f - variable on device to store the input data
// d_d_f - variable that store the natural order of d_f data
// d_out - device output
cudaLibXtDesc *d_f, *d_d_f, *d_out;
// cufftXtMalloc() - Malloc data on multiple GPUs
result = cufftXtMalloc(planComplex, (cudaLibXtDesc **)&d_f,
CUFFT_XT_FORMAT_INPLACE);
if (result != CUFFT_SUCCESS) {
printf("*XtMalloc failed\n");
exit(EXIT_FAILURE);
}
result = cufftXtMalloc(planComplex, (cudaLibXtDesc **)&d_d_f,
CUFFT_XT_FORMAT_INPLACE);
if (result != CUFFT_SUCCESS) {
printf("*XtMalloc failed\n");
exit(EXIT_FAILURE);
}
result = cufftXtMalloc(planComplex, (cudaLibXtDesc **)&d_out,
CUFFT_XT_FORMAT_INPLACE);
if (result != CUFFT_SUCCESS) {
printf("*XtMalloc failed\n");
exit(EXIT_FAILURE);
}
// cufftXtMemcpy() - Copy the data from host to device
result = cufftXtMemcpy(planComplex, d_f, h_f, CUFFT_COPY_HOST_TO_DEVICE);
if (result != CUFFT_SUCCESS) {
printf("*XtMemcpy failed\n");
exit(EXIT_FAILURE);
}
// cufftXtExecDescriptorC2C() - Execute FFT on data on multiple GPUs
printf("Forward 2d FFT on multiple GPUs\n");
result = cufftXtExecDescriptorC2C(planComplex, d_f, d_f, CUFFT_FORWARD);
if (result != CUFFT_SUCCESS) {
printf("*XtExecC2C failed\n");
exit(EXIT_FAILURE);
}
// cufftXtMemcpy() - Copy the data to natural order on GPUs
result = cufftXtMemcpy(planComplex, d_d_f, d_f, CUFFT_COPY_DEVICE_TO_DEVICE);
if (result != CUFFT_SUCCESS) {
printf("*XtMemcpy failed\n");
exit(EXIT_FAILURE);
}
printf("Solve Poisson Equation\n");
solvePoissonEquation(d_d_f, d_out, d_k, N, nGPUs);
printf("Inverse 2d FFT on multiple GPUs\n");
// cufftXtExecDescriptorC2C() - Execute inverse FFT on data on multiple GPUs
result = cufftXtExecDescriptorC2C(planComplex, d_out, d_out, CUFFT_INVERSE);
if (result != CUFFT_SUCCESS) {
printf("*XtExecC2C failed\n");
exit(EXIT_FAILURE);
}
// Create a variable on host to copy the data from device
// h_d_out - variable store the output of device
Complex *h_d_out = (Complex *)malloc(sizeof(Complex) * N * N);
// cufftXtMemcpy() - Copy data from multiple GPUs to host
result =
cufftXtMemcpy(planComplex, h_d_out, d_out, CUFFT_COPY_DEVICE_TO_HOST);
if (result != CUFFT_SUCCESS) {
printf("*XtMemcpy failed\n");
exit(EXIT_FAILURE);
}
float *out = (float *)malloc(sizeof(float) * N * N);
float constant = h_d_out[0].x / N * N;
for (int i = 0; i < N * N; i++) {
// subtract u[0] to force the arbitrary constant to be 0
out[i] = (h_d_out[i].x / (N * N)) - constant;
}
// cleanup memory
free(h_f);
free(k);
free(out);
free(h_d_out);
free(x);
free(whichGPUs);
free(y);
free(f);
free(u_a);
free(worksize);
// cudaXtFree() - Free GPU memory
for (int i = 0; i < GPU_COUNT; i++) {
cudaFree(d_k[i]);
}
result = cufftXtFree(d_out);
if (result != CUFFT_SUCCESS) {
printf("*XtFree failed\n");
exit(EXIT_FAILURE);
}
result = cufftXtFree(d_f);
if (result != CUFFT_SUCCESS) {
printf("*XtFree failed\n");
exit(EXIT_FAILURE);
}
result = cufftXtFree(d_d_f);
if (result != CUFFT_SUCCESS) {
printf("*XtFree failed\n");
exit(EXIT_FAILURE);
}
// cufftDestroy() - Destroy FFT plan
result = cufftDestroy(planComplex);
if (result != CUFFT_SUCCESS) {
printf("cufftDestroy failed: code %d\n", (int)result);
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
////////////////////////////////////////////////////////////////////////////////////
// Launch kernel on multiple GPU
///////////////////////////////////////////////////////////////////////////////////
void solvePoissonEquation(cudaLibXtDesc *d_ft, cudaLibXtDesc *d_ft_k, float **k,
int N, int nGPUs) {
int device;
dim3 dimGrid(int(N / BSZ_X), int((N / 2) / BSZ_Y));
dim3 dimBlock(BSZ_X, BSZ_Y);
for (int i = 0; i < nGPUs; i++) {
device = d_ft_k->descriptor->GPUs[i];
cudaSetDevice(device);
solvePoisson<<<dimGrid, dimBlock>>>(
(cufftComplex *)d_ft->descriptor->data[i],
(cufftComplex *)d_ft_k->descriptor->data[i], k[i], N, i, nGPUs);
}
// Wait for device to finish all operation
for (int i = 0; i < nGPUs; i++) {
device = d_ft_k->descriptor->GPUs[i];
cudaSetDevice(device);
cudaDeviceSynchronize();
// Check if kernel execution generated and error
getLastCudaError("Kernel execution failed [ solvePoisson ]");
}
}
////////////////////////////////////////////////////////////////////////////////
// Kernel for Solving Poisson equation on GPU
////////////////////////////////////////////////////////////////////////////////
__global__ void solvePoisson(cufftComplex *ft, cufftComplex *ft_k, float *k,
int N, int gpu_id, int n_gpu) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = threadIdx.y + blockIdx.y * blockDim.y;
int index = j * N + i;
if (i < N && j < N / n_gpu) {
float k2 =
k[i] * k[i] + k[j + gpu_id * N / n_gpu] * k[j + gpu_id * N / n_gpu];
if (i == 0 && j == 0 && gpu_id == 0) {
k2 = 1.0f;
}
ft_k[index].x = -ft[index].x * 1 / k2;
ft_k[index].y = -ft[index].y * 1 / k2;
}
}