mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-20 07:05:48 +08:00
174 lines
5.7 KiB
Plaintext
174 lines
5.7 KiB
Plaintext
|
/* Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This is a simple test showing performance and usability
|
||
|
* improvements with large kernel parameters introduced in CUDA 12.1
|
||
|
*/
|
||
|
#include <chrono>
|
||
|
#include <iostream>
|
||
|
#include <cassert>
|
||
|
|
||
|
// Utility includes
|
||
|
#include <helper_cuda.h>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace std::chrono;
|
||
|
|
||
|
#define TEST_ITERATIONS (1000)
|
||
|
#define TOTAL_PARAMS (8000) // ints
|
||
|
#define KERNEL_PARAM_LIMIT (1024) // ints
|
||
|
#define CONST_COPIED_PARAMS (TOTAL_PARAMS - KERNEL_PARAM_LIMIT)
|
||
|
|
||
|
__constant__ int excess_params[CONST_COPIED_PARAMS];
|
||
|
|
||
|
typedef struct {
|
||
|
int param[KERNEL_PARAM_LIMIT];
|
||
|
} param_t;
|
||
|
|
||
|
typedef struct {
|
||
|
int param[TOTAL_PARAMS];
|
||
|
} param_large_t;
|
||
|
|
||
|
// Kernel with 4KB kernel parameter limit
|
||
|
__global__ void kernelDefault(__grid_constant__ const param_t p, int *result) {
|
||
|
int tmp = 0;
|
||
|
|
||
|
// accumulate kernel parameters
|
||
|
for (int i = 0; i < KERNEL_PARAM_LIMIT; ++i) {
|
||
|
tmp += p.param[i];
|
||
|
}
|
||
|
|
||
|
// accumulate excess values passed via const memory
|
||
|
for (int i = 0; i < CONST_COPIED_PARAMS; ++i) {
|
||
|
tmp += excess_params[i];
|
||
|
}
|
||
|
|
||
|
*result = tmp;
|
||
|
}
|
||
|
|
||
|
// Kernel with 32,764 byte kernel parameter limit
|
||
|
__global__ void kernelLargeParam(__grid_constant__ const param_large_t p, int *result) {
|
||
|
int tmp = 0;
|
||
|
|
||
|
// accumulate kernel parameters
|
||
|
for (int i = 0; i < TOTAL_PARAMS; ++i) {
|
||
|
tmp += p.param[i];
|
||
|
}
|
||
|
|
||
|
*result = tmp;
|
||
|
}
|
||
|
|
||
|
static void report_time(std::chrono::time_point<std::chrono::steady_clock> start,
|
||
|
std::chrono::time_point<std::chrono::steady_clock> end,
|
||
|
int iters) {
|
||
|
auto usecs = duration_cast<duration<float,
|
||
|
microseconds::period>>(end - start);
|
||
|
cout << usecs.count() / iters << endl;
|
||
|
}
|
||
|
|
||
|
int main() {
|
||
|
int rc;
|
||
|
cudaFree(0);
|
||
|
|
||
|
param_t p;
|
||
|
param_large_t p_large;
|
||
|
|
||
|
// pageable host memory that holds excess constants passed via constant memory
|
||
|
int *copied_params = (int *)malloc(CONST_COPIED_PARAMS * sizeof(int));
|
||
|
assert(copied_params);
|
||
|
|
||
|
// storage for computed result
|
||
|
int *d_result;
|
||
|
int h_result;
|
||
|
checkCudaErrors(cudaMalloc(&d_result, sizeof(int)));
|
||
|
|
||
|
int expected_result = 0;
|
||
|
|
||
|
// fill in data for validation
|
||
|
for (int i = 0; i < KERNEL_PARAM_LIMIT; ++i) {
|
||
|
p.param[i] = (i & 0xFF);
|
||
|
}
|
||
|
for (int i = KERNEL_PARAM_LIMIT; i < TOTAL_PARAMS; ++i) {
|
||
|
copied_params[i - KERNEL_PARAM_LIMIT] = (i & 0xFF);
|
||
|
}
|
||
|
for (int i = 0; i < TOTAL_PARAMS; ++i) {
|
||
|
p_large.param[i] = (i & 0xFF);
|
||
|
expected_result += (i & 0xFF);
|
||
|
}
|
||
|
|
||
|
// warmup, verify correctness
|
||
|
checkCudaErrors(cudaMemcpyToSymbol(excess_params, copied_params, CONST_COPIED_PARAMS * sizeof(int), 0, cudaMemcpyHostToDevice));
|
||
|
kernelDefault<<<1,1>>>(p, d_result);
|
||
|
checkCudaErrors(cudaMemcpy(&h_result, d_result, sizeof(int), cudaMemcpyDeviceToHost));
|
||
|
checkCudaErrors(cudaDeviceSynchronize());
|
||
|
if(h_result != expected_result) {
|
||
|
std::cout << "Test failed" << std::endl;
|
||
|
rc=-1;
|
||
|
goto Exit;
|
||
|
}
|
||
|
|
||
|
kernelLargeParam<<<1,1>>>(p_large, d_result);
|
||
|
checkCudaErrors(cudaMemcpy(&h_result, d_result, sizeof(int), cudaMemcpyDeviceToHost));
|
||
|
checkCudaErrors(cudaDeviceSynchronize());
|
||
|
if(h_result != expected_result) {
|
||
|
std::cout << "Test failed" << std::endl;
|
||
|
rc=-1;
|
||
|
goto Exit;
|
||
|
}
|
||
|
|
||
|
// benchmark default kernel parameter limit
|
||
|
{
|
||
|
auto start = steady_clock::now();
|
||
|
for (int i = 0; i < TEST_ITERATIONS; ++i) {
|
||
|
checkCudaErrors(cudaMemcpyToSymbol(excess_params, copied_params, CONST_COPIED_PARAMS * sizeof(int), 0, cudaMemcpyHostToDevice));
|
||
|
kernelDefault<<<1, 1>>>(p, d_result);
|
||
|
}
|
||
|
checkCudaErrors(cudaDeviceSynchronize());
|
||
|
auto end = steady_clock::now();
|
||
|
std::cout << "Kernel 4KB parameter limit - time (us):";
|
||
|
report_time(start, end, TEST_ITERATIONS);
|
||
|
|
||
|
// benchmark large kernel parameter limit
|
||
|
start = steady_clock::now();
|
||
|
for (int i = 0; i < TEST_ITERATIONS; ++i) {
|
||
|
kernelLargeParam<<<1, 1>>>(p_large, d_result);
|
||
|
}
|
||
|
checkCudaErrors(cudaDeviceSynchronize());
|
||
|
end = steady_clock::now();
|
||
|
std::cout << "Kernel 32,764 byte parameter limit - time (us):";
|
||
|
report_time(start, end, TEST_ITERATIONS);
|
||
|
}
|
||
|
std::cout << "Test passed!" << std::endl;
|
||
|
rc=0;
|
||
|
Exit:
|
||
|
// cleanup
|
||
|
cudaFree(d_result);
|
||
|
free(copied_params);
|
||
|
return rc;
|
||
|
}
|