cuda-samples/Samples/3_CUDA_Features/globalToShmemTMACopy/globalToShmemTMACopy.cu

354 lines
13 KiB
Plaintext
Raw Normal View History

2023-06-30 23:39:53 +08:00
/* Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* This sample demonstrates how to:
*
* - Create a TensorMap (TMA descriptor)
* - Load a 2D tile of data into shared memory
*
* Compile and run with:
2023-06-30 23:39:53 +08:00
*
* nvcc -arch sm_90 -run globalToShmemTMACopy.cu
2023-06-30 23:39:53 +08:00
*
* It can be that the compiler issues the following note. This can be safely ignored.
*
* note: the ABI for passing parameters with 64-byte alignment has changed in
* GCC 4.6
*
*/
#include <cstdio> // printf
#include <vector> // std::vector
#include <cudaTypedefs.h> // PFN_cuTensorMapEncodeTiled
#include <cuda.h> // CUtensormap
2023-06-30 23:39:53 +08:00
#include <cuda_awbarrier_primitives.h> // __mbarrier_*
#include "util.h" // CUDA_CHECK macro
/*
* Constants.
*/
constexpr size_t W_global = 1024; // Width of tensor (in # elements)
constexpr size_t H_global = 1024; // Height of tensor (in # elements)
constexpr int SMEM_W = 32; // Width of shared memory buffer (in # elements)
constexpr int SMEM_H = 8; // Height of shared memory buffer (in # elements)
/*
* CUDA Driver API
*/
PFN_cuTensorMapEncodeTiled get_cuTensorMapEncodeTiled() {
void* driver_ptr = nullptr;
cudaDriverEntryPointQueryResult driver_status;
CUDA_CHECK(cudaGetDriverEntryPoint("cuTensorMapEncodeTiled", &driver_ptr, cudaEnableDefault, &driver_status));
return reinterpret_cast<PFN_cuTensorMapEncodeTiled>(driver_ptr);
2023-06-30 23:39:53 +08:00
}
/*
* PTX wrappers
*/
inline __device__ __mbarrier_token_t barrier_arrive1_tx(
__mbarrier_t *barrier, uint32_t expected_tx_count
)
{
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-arrive
__mbarrier_token_t token;
asm volatile("mbarrier.arrive.expect_tx.release.cta.shared::cta.b64 %0, [%1], %2;"
: "=l"(token)
: "r"(static_cast<unsigned int>(__cvta_generic_to_shared(barrier))), "r"(expected_tx_count)
: "memory");
return token;
}
inline __device__ bool barrier_try_wait_token(__mbarrier_t *barrier, __mbarrier_token_t token)
{
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-test-wait-try-wait
//
// This function returns a bool, so that software can retry.
//
// The HW only provides best-effort waiting support. The wait time is limited
// by the HW capability, after which a fail occurs, in which case the SW is
// responsible for retrying.
int __ready;
asm volatile("{\n\t"
".reg .pred p;\n\t"
"mbarrier.try_wait.acquire.cta.shared::cta.b64 p, [%1], %2;\n\t"
"selp.b32 %0, 1, 0, p;\n\t"
"}"
: "=r"(__ready)
: "r"(static_cast<unsigned int>(__cvta_generic_to_shared(barrier))),
"l"(token)
: "memory");
return __ready;
}
inline __device__ void cp_async_bulk_tensor_2d(
__mbarrier_t *barrier, void *dst, int access_coord_x, int access_coord_y, const CUtensorMap *tensor_desc)
{
unsigned smem_int_ptr = static_cast<unsigned int>(__cvta_generic_to_shared(dst));
unsigned smem_barrier_int_ptr = static_cast<unsigned int>(__cvta_generic_to_shared(barrier));
uint64_t tensor_desc_ptr = reinterpret_cast<uint64_t>(tensor_desc);
asm volatile(
"cp.async.bulk.tensor.2d.shared::cluster.global.tile.mbarrier::complete_tx::bytes "
"[%0], [%1, {%2, %3}], [%4];\n"
:
: "r"(smem_int_ptr),
"l"(tensor_desc_ptr),
"r"(access_coord_x),
"r"(access_coord_y),
"r"(smem_barrier_int_ptr)
: "memory");
}
// Layout of shared memory. It contains:
//
// - a buffer to hold a subset of a tensor,
// - a shared memory barrier.
template <int H, int W>
struct smem_t {
// The destination shared memory buffer of a bulk tensor operation should be
// 128 byte aligned.
struct alignas(128) tensor_buffer {
int data[H][W];
__device__ constexpr int width() {return W;}
__device__ constexpr int height() {return H;}
};
tensor_buffer buffer;
// Put the barrier behind the tensor buffer to prevent 100+ bytes of padding.
__mbarrier_t bar;
__device__ constexpr int buffer_size_in_bytes() {
return sizeof(tensor_buffer::data);
}
};
/*
* Main kernel: takes a TMA descriptor and two coordinates.
*
* Loads a tile into shared memory using TMA and prints the tile.
*
*/
__global__ void kernel(const __grid_constant__ CUtensorMap tma_desc, int x_0, int y_0) {
/*
* ***NOTE***:
A CUtensorMap can only be passed as a `const __grid_constant__`
parameter. Passing a CUtensorMap in any other way from the host to
device can result in difficult if not impossible to debug failures.
*/
// Declare shared memory to hold tensor buffer and shared memory barrier.
__shared__ smem_t<SMEM_H, SMEM_W> smem;
// Utility variable to elect a leader thread.
bool leader = threadIdx.x == 0;
if (leader) {
// Initialize barrier. We will participate in the barrier with `blockDim.x`
// threads.
__mbarrier_init(&smem.bar, blockDim.x);
}
// Syncthreads so initialized barrier is visible to all threads.
__syncthreads();
// This token is created when arriving on the shared memory barrier. It is
// used again when waiting on the barrier.
__mbarrier_token_t token;
// Load first batch
if (leader) {
// Initiate bulk tensor copy.
cp_async_bulk_tensor_2d(&smem.bar, &smem.buffer.data, x_0, y_0, &tma_desc);
// Arrive with arrival count of 1 and expected transaction count equal to
// the number of bytes that are copied by cp_async_bulk_tensor_2d.
token = barrier_arrive1_tx(&smem.bar, smem.buffer_size_in_bytes());
} else {
// Other threads arrive with arrival count of 1 and expected tx count of 0.
token = barrier_arrive1_tx(&smem.bar, 0);
}
// The barrier will flip when the following two conditions have been met:
//
// - Its arrival count reaches blockDim.x (see __mbarrier_init above).
// Typically, each thread will arrive with an arrival count of one so this
// indicates that all threads have arrived.
//
// - Its expected transaction count reaches smem.buffer_size_in_bytes(). The
// bulk tensor operation will increment the transaction count as it copies
// bytes.
// Wait for barrier to flip. Try_wait puts the thread to sleep while waiting.
// It is woken up when the barrier flips or when a hardware-defined number of
// clock cycles have passed. In the second case, we retry waiting.
while(! barrier_try_wait_token(&smem.bar, token)) { };
// From this point onwards, the data in smem.buffer is readable by all threads
// participating the in the barrier.
// Print the data:
if (leader) {
printf("\n\nPrinting tile at coordinates x0 = %d, y0 = %d\n", x_0, y_0);
// Print global x coordinates
printf("global->\t");
for (int x = 0; x < smem.buffer.width(); ++x) {
printf("[%4d] ", x_0 + x);
}
printf("\n");
// Print local x coordinates
printf("local ->\t");
for (int x = 0; x < smem.buffer.width(); ++x) {
printf("[%4d] ", x);
}
printf("\n");
for (int y = 0; y < smem.buffer.height(); ++y) {
// Print global and local y coordinates
printf("[%4d] [%2d]\t", y_0 + y, y);
for (int x = 0; x < smem.buffer.width(); ++x) {
printf(" %4d ", smem.buffer.data[y][x]);
}
printf("\n");
}
// Invalidate barrier. If further computations were to take place in the
// kernel, this allows the memory location of the shared memory barrier to
// be repurposed.
__mbarrier_inval(&smem.bar);
}
}
int main(int argc, char **argv) {
// Create a 2D tensor in GPU global memory containing linear indices 0, 1, 2, ... .
// The data layout is row-major.
// First fill in a vector on the host.
std::vector<int> tensor_host(H_global * W_global);
for (int i = 0; i < H_global * W_global; ++i) {
tensor_host[i] = i;
}
// Move it to device
int * tensor = nullptr;
CUDA_CHECK(cudaMalloc(&tensor, H_global * W_global * sizeof(int)));
CUDA_CHECK(cudaMemcpy(tensor, tensor_host.data(), H_global * W_global * sizeof(int), cudaMemcpyHostToDevice));
// Set up parameters to create TMA descriptor.
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TENSOR__MEMORY.html
CUtensorMap tma_desc{};
CUtensorMapDataType dtype = CUtensorMapDataType::CU_TENSOR_MAP_DATA_TYPE_INT32;
auto rank = 2;
uint64_t size[rank] = {W_global, H_global};
// The stride is the number of bytes to traverse from the first element of one row to the next.
// It must be a multiple of 16.
uint64_t stride[rank - 1] = {W_global * sizeof(int)};
// The box_size is the size of the shared memory buffer that is used as the destination of a TMA transfer.
uint32_t box_size[rank] = {SMEM_W, SMEM_H};
// The distance between elements in units of sizeof(element). A stride of 2
// can be used to load only the real component of a complex-valued tensor, for instance.
uint32_t elem_stride[rank] = {1, 1};
// Interleave patterns are sometimes used to accelerate loading of values that
// are less than 4 bytes long.
CUtensorMapInterleave interleave = CUtensorMapInterleave::CU_TENSOR_MAP_INTERLEAVE_NONE;
// Swizzling can be used to avoid shared memory bank conflicts.
CUtensorMapSwizzle swizzle = CUtensorMapSwizzle::CU_TENSOR_MAP_SWIZZLE_NONE;
CUtensorMapL2promotion l2_promotion = CUtensorMapL2promotion::CU_TENSOR_MAP_L2_PROMOTION_NONE;
// Any element that is outside of bounds will be set to zero by the TMA transfer.
CUtensorMapFloatOOBfill oob_fill = CUtensorMapFloatOOBfill::CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE;
// Get a function pointer to the cuTensorMapEncodeTiled driver API.
auto cuTensorMapEncodeTiled = get_cuTensorMapEncodeTiled();
// Create the tensor descriptor.
CUresult res = cuTensorMapEncodeTiled(
&tma_desc, // CUtensorMap *tensorMap,
dtype, // CUtensorMapDataType tensorDataType,
rank, // cuuint32_t tensorRank,
tensor, // void *globalAddress,
size, // const cuuint64_t *globalDim,
stride, // const cuuint64_t *globalStrides,
box_size, // const cuuint32_t *boxDim,
elem_stride, // const cuuint32_t *elementStrides,
interleave, // CUtensorMapInterleave interleave,
swizzle, // CUtensorMapSwizzle swizzle,
l2_promotion, // CUtensorMapL2promotion l2Promotion,
oob_fill // CUtensorMapFloatOOBfill oobFill);
);
// Print the result. Should be zero.
printf("cuTensorMapEncodeTiled returned CUresult: %d\n\n", res);
CUDA_CHECK(cudaDeviceSynchronize());
dim3 grid(1);
dim3 block(128);
printf("Print the top right corner tile of the tensor:\n");
kernel<<<grid, block>>>(tma_desc, 0, 0);
CUDA_CHECK(cudaDeviceSynchronize());
printf("Negative indices work:\n");
kernel<<<grid, block>>>(tma_desc, -4, 0);
CUDA_CHECK(cudaDeviceSynchronize());
printf("When the indices are out of bounds, the shared memory buffer is filled with zeros:\n");
kernel<<<grid, block>>>(tma_desc, W_global, H_global);
CUDA_CHECK(cudaDeviceSynchronize());
printf(
"\nCare must be taken to ensure that the coordinates result in a memory offset\n"
"that is aligned to 16 bytes. With 32 bit integer elements, x coordinates\n"
"that are not a multiple of 4 result in a non-recoverable error:\n"
);
kernel<<<grid, block>>>(tma_desc, 1, 0);
CUDA_REPORT(cudaDeviceSynchronize());
kernel<<<grid, block>>>(tma_desc, 2, 0);
CUDA_REPORT(cudaDeviceSynchronize());
kernel<<<grid, block>>>(tma_desc, 3, 0);
CUDA_REPORT(cudaDeviceSynchronize());
CUDA_CHECK(cudaFree(tensor));
return 0;
}