cuda-samples/Samples/5_Domain_Specific/fluidsGLES/fluidsGLES_kernels.cu

357 lines
13 KiB
Plaintext
Raw Normal View History

2022-01-13 14:05:24 +08:00
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2021-10-21 19:04:49 +08:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <cufft.h> // CUDA FFT Libraries
#include <helper_cuda.h> // Helper functions for CUDA Error handling
// OpenGL Graphics includes
#include <GLES3/gl31.h>
// FluidsGLES CUDA kernel definitions
#include "fluidsGLES_kernels.cuh"
// Texture object for reading velocity field
cudaTextureObject_t texObj;
static cudaArray *array = NULL;
// Particle data
extern GLuint vbo; // OpenGL vertex buffer object
extern struct cudaGraphicsResource
*cuda_vbo_resource; // handles OpenGL-CUDA exchange
// Texture pitch
extern size_t tPitch;
extern cufftHandle planr2c;
extern cufftHandle planc2r;
cData *vxfield = NULL;
cData *vyfield = NULL;
void setupTexture(int x, int y) {
cudaChannelFormatDesc desc = cudaCreateChannelDesc<float2>();
cudaMallocArray(&array, &desc, y, x);
getLastCudaError("cudaMalloc failed");
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = array;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = false;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeWrap;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(cudaCreateTextureObject(&texObj, &texRes, &texDescr, NULL));
}
void updateTexture(cData *data, size_t wib, size_t h, size_t pitch) {
checkCudaErrors(cudaMemcpy2DToArray(array, 0, 0, data, pitch, wib, h,
cudaMemcpyDeviceToDevice));
}
void deleteTexture(void) {
checkCudaErrors(cudaDestroyTextureObject(texObj));
checkCudaErrors(cudaFreeArray(array));
}
// Note that these kernels are designed to work with arbitrary
// domain sizes, not just domains that are multiples of the tile
// size. Therefore, we have extra code that checks to make sure
// a given thread location falls within the domain boundaries in
// both X and Y. Also, the domain is covered by looping over
// multiple elements in the Y direction, while there is a one-to-one
// mapping between threads in X and the tile size in X.
// Nolan Goodnight 9/22/06
// This method adds constant force vectors to the velocity field
// stored in 'v' according to v(x,t+1) = v(x,t) + dt * f.
__global__ void addForces_k(cData *v, int dx, int dy, int spx, int spy,
float fx, float fy, int r, size_t pitch) {
int tx = threadIdx.x;
int ty = threadIdx.y;
cData *fj = (cData *)((char *)v + (ty + spy) * pitch) + tx + spx;
cData vterm = *fj;
tx -= r;
ty -= r;
float s = 1.f / (1.f + tx * tx * tx * tx + ty * ty * ty * ty);
vterm.x += s * fx;
vterm.y += s * fy;
*fj = vterm;
}
// This method performs the velocity advection step, where we
// trace velocity vectors back in time to update each grid cell.
// That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear
// interpolation in the velocity space.
__global__ void advectVelocity_k(cData *v, float *vx, float *vy, int dx,
int pdx, int dy, float dt, int lb,
cudaTextureObject_t texObject) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
cData vterm, ploc;
float vxterm, vyterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * pdx + gtidx;
vterm = tex2D<cData>(texObject, (float)gtidx, (float)fi);
ploc.x = (gtidx + 0.5f) - (dt * vterm.x * dx);
ploc.y = (fi + 0.5f) - (dt * vterm.y * dy);
vterm = tex2D<cData>(texObject, ploc.x, ploc.y);
vxterm = vterm.x;
vyterm = vterm.y;
vx[fj] = vxterm;
vy[fj] = vyterm;
}
}
}
}
// This method performs velocity diffusion and forces mass conservation
// in the frequency domain. The inputs 'vx' and 'vy' are complex-valued
// arrays holding the Fourier coefficients of the velocity field in
// X and Y. Diffusion in this space takes a simple form described as:
// v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity,
// and k is the wavenumber. The projection step forces the Fourier
// velocity vectors to be orthogonal to the vectors for each
// wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2.
__global__ void diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt,
float visc, int lb) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
cData xterm, yterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * dx + gtidx;
xterm = vx[fj];
yterm = vy[fj];
// Compute the index of the wavenumber based on the
// data order produced by a standard NN FFT.
int iix = gtidx;
int iiy = (fi > dy / 2) ? (fi - (dy)) : fi;
// Velocity diffusion
float kk = (float)(iix * iix + iiy * iiy); // k^2
float diff = 1.f / (1.f + visc * dt * kk);
xterm.x *= diff;
xterm.y *= diff;
yterm.x *= diff;
yterm.y *= diff;
// Velocity projection
if (kk > 0.f) {
float rkk = 1.f / kk;
// Real portion of velocity projection
float rkp = (iix * xterm.x + iiy * yterm.x);
// Imaginary portion of velocity projection
float ikp = (iix * xterm.y + iiy * yterm.y);
xterm.x -= rkk * rkp * iix;
xterm.y -= rkk * ikp * iix;
yterm.x -= rkk * rkp * iiy;
yterm.y -= rkk * ikp * iiy;
}
vx[fj] = xterm;
vy[fj] = yterm;
}
}
}
}
// This method updates the velocity field 'v' using the two complex
// arrays from the previous step: 'vx' and 'vy'. Here we scale the
// real components by 1/(dx*dy) to account for an unnormalized FFT.
__global__ void updateVelocity_k(cData *v, float *vx, float *vy, int dx,
int pdx, int dy, int lb, size_t pitch) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
float vxterm, vyterm;
cData nvterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fjr = fi * pdx + gtidx;
vxterm = vx[fjr];
vyterm = vy[fjr];
// Normalize the result of the inverse FFT
float scale = 1.f / (dx * dy);
nvterm.x = vxterm * scale;
nvterm.y = vyterm * scale;
cData *fj = (cData *)((char *)v + fi * pitch) + gtidx;
*fj = nvterm;
}
} // If this thread is inside the domain in Y
} // If this thread is inside the domain in X
}
// This method updates the particles by moving particle positions
// according to the velocity field and time step. That is, for each
// particle: p(t+1) = p(t) + dt * v(p(t)).
__global__ void advectParticles_k(cData *part, cData *v, int dx, int dy,
float dt, int lb, size_t pitch) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
// gtidx is the domain location in x for this thread
cData pterm, vterm;
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * dx + gtidx;
pterm = part[fj];
int xvi = ((int)(pterm.x * dx));
int yvi = ((int)(pterm.y * dy));
vterm = *((cData *)((char *)v + yvi * pitch) + xvi);
pterm.x += dt * vterm.x;
pterm.x = pterm.x - (int)pterm.x;
pterm.x += 1.f;
pterm.x = pterm.x - (int)pterm.x;
pterm.y += dt * vterm.y;
pterm.y = pterm.y - (int)pterm.y;
pterm.y += 1.f;
pterm.y = pterm.y - (int)pterm.y;
part[fj] = pterm;
}
} // If this thread is inside the domain in Y
} // If this thread is inside the domain in X
}
// These are the external function calls necessary for launching fluid simuation
extern "C" void addForces(cData *v, int dx, int dy, int spx, int spy, float fx,
float fy, int r) {
dim3 tids(2 * r + 1, 2 * r + 1);
addForces_k<<<1, tids>>>(v, dx, dy, spx, spy, fx, fy, r, tPitch);
getLastCudaError("addForces_k failed.");
}
extern "C" void advectVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
int dy, float dt) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
updateTexture(v, DIM * sizeof(cData), DIM, tPitch);
advectVelocity_k<<<grid, tids>>>(v, vx, vy, dx, pdx, dy, dt, TILEY / TIDSY,
texObj);
getLastCudaError("advectVelocity_k failed.");
}
extern "C" void diffuseProject(cData *vx, cData *vy, int dx, int dy, float dt,
float visc) {
// Forward FFT
checkCudaErrors(cufftExecR2C(planr2c, (cufftReal *)vx, (cufftComplex *)vx));
checkCudaErrors(cufftExecR2C(planr2c, (cufftReal *)vy, (cufftComplex *)vy));
uint3 grid = make_uint3((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1), 1);
uint3 tids = make_uint3(TIDSX, TIDSY, 1);
diffuseProject_k<<<grid, tids>>>(vx, vy, dx, dy, dt, visc, TILEY / TIDSY);
getLastCudaError("diffuseProject_k failed.");
// Inverse FFT
checkCudaErrors(cufftExecC2R(planc2r, (cufftComplex *)vx, (cufftReal *)vx));
checkCudaErrors(cufftExecC2R(planc2r, (cufftComplex *)vy, (cufftReal *)vy));
}
extern "C" void updateVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
int dy) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
updateVelocity_k<<<grid, tids>>>(v, vx, vy, dx, pdx, dy, TILEY / TIDSY,
tPitch);
getLastCudaError("updateVelocity_k failed.");
}
extern "C" void advectParticles(GLuint vbo, cData *v, int dx, int dy,
float dt) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
cData *p;
checkCudaErrors(cudaGraphicsMapResources(1, &cuda_vbo_resource, 0));
getLastCudaError("cudaGraphicsMapResources failed");
size_t num_bytes;
checkCudaErrors(cudaGraphicsResourceGetMappedPointer((void **)&p, &num_bytes,
cuda_vbo_resource));
getLastCudaError("cudaGraphicsResourceGetMappedPointer failed");
advectParticles_k<<<grid, tids>>>(p, v, dx, dy, dt, TILEY / TIDSY, tPitch);
getLastCudaError("advectParticles_k failed.");
checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_vbo_resource, 0));
}