cuda-samples/Samples/2_Concepts_and_Techniques/dct8x8/BmpUtil.cpp

456 lines
14 KiB
C++
Raw Normal View History

2022-01-13 14:05:24 +08:00
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2021-10-21 19:04:49 +08:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
**************************************************************************
* \file BmpUtil.cpp
* \brief Contains basic image operations implementation.
*
* This file contains implementation of basic bitmap loading, saving,
* conversions to different representations and memory management routines.
*/
#include "Common.h"
#include "BmpUtil.h"
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
#pragma warning(disable : 4996) // disable deprecated warning
#endif
/**
**************************************************************************
* The routine clamps the input value to integer byte range [0, 255]
*
* \param x [IN] - Input value
*
* \return Pointer to the created plane
*/
int clamp_0_255(int x) { return (x < 0) ? 0 : ((x > 255) ? 255 : x); }
/**
**************************************************************************
* Float round to nearest value
*
* \param num [IN] - Float value to round
*
* \return The closest to the input float integer value
*/
float round_f(float num) {
float NumAbs = fabs(num);
int NumAbsI = (int)(NumAbs + 0.5f);
float sign = num > 0 ? 1.0f : -1.0f;
return sign * NumAbsI;
}
/**
**************************************************************************
* Memory allocator, returns aligned format frame with 8bpp pixels.
*
* \param width [IN] - Width of image buffer to be allocated
* \param height [IN] - Height of image buffer to be allocated
* \param pStepBytes [OUT] - Step between two sequential rows
*
* \return Pointer to the created plane
*/
byte *MallocPlaneByte(int width, int height, int *pStepBytes) {
byte *ptr;
*pStepBytes = ((int)ceil(width / 16.0f)) * 16;
//#ifdef __ALLOW_ALIGNED_MEMORY_MANAGEMENT
// ptr = (byte *)_aligned_malloc(*pStepBytes * height, 16);
//#else
ptr = (byte *)malloc(*pStepBytes * height);
//#endif
return ptr;
}
/**
**************************************************************************
* Memory allocator, returns aligned format frame with 16bpp float pixels.
*
* \param width [IN] - Width of image buffer to be allocated
* \param height [IN] - Height of image buffer to be allocated
* \param pStepBytes [OUT] - Step between two sequential rows
*
* \return Pointer to the created plane
*/
short *MallocPlaneShort(int width, int height, int *pStepBytes) {
short *ptr;
*pStepBytes = ((int)ceil((width * sizeof(short)) / 16.0f)) * 16;
//#ifdef __ALLOW_ALIGNED_MEMORY_MANAGEMENT
// ptr = (float *)_aligned_malloc(*pStepBytes * height, 16);
//#else
ptr = (short *)malloc(*pStepBytes * height);
//#endif
*pStepBytes = *pStepBytes / sizeof(short);
return ptr;
}
/**
**************************************************************************
* Memory allocator, returns aligned format frame with 32bpp float pixels.
*
* \param width [IN] - Width of image buffer to be allocated
* \param height [IN] - Height of image buffer to be allocated
* \param pStepBytes [OUT] - Step between two sequential rows
*
* \return Pointer to the created plane
*/
float *MallocPlaneFloat(int width, int height, int *pStepBytes) {
float *ptr;
*pStepBytes = ((int)ceil((width * sizeof(float)) / 16.0f)) * 16;
//#ifdef __ALLOW_ALIGNED_MEMORY_MANAGEMENT
// ptr = (float *)_aligned_malloc(*pStepBytes * height, 16);
//#else
ptr = (float *)malloc(*pStepBytes * height);
//#endif
*pStepBytes = *pStepBytes / sizeof(float);
return ptr;
}
/**
**************************************************************************
* Copies byte plane to float plane
*
* \param ImgSrc [IN] - Source byte plane
* \param StrideB [IN] - Source plane stride
* \param ImgDst [OUT] - Destination float plane
* \param StrideF [IN] - Destination plane stride
* \param Size [IN] - Size of area to copy
*
* \return None
*/
void CopyByte2Float(byte *ImgSrc, int StrideB, float *ImgDst, int StrideF,
ROI Size) {
for (int i = 0; i < Size.height; i++) {
for (int j = 0; j < Size.width; j++) {
ImgDst[i * StrideF + j] = (float)ImgSrc[i * StrideB + j];
}
}
}
/**
**************************************************************************
* Copies float plane to byte plane (with clamp)
*
* \param ImgSrc [IN] - Source float plane
* \param StrideF [IN] - Source plane stride
* \param ImgDst [OUT] - Destination byte plane
* \param StrideB [IN] - Destination plane stride
* \param Size [IN] - Size of area to copy
*
* \return None
*/
void CopyFloat2Byte(float *ImgSrc, int StrideF, byte *ImgDst, int StrideB,
ROI Size) {
for (int i = 0; i < Size.height; i++) {
for (int j = 0; j < Size.width; j++) {
ImgDst[i * StrideB + j] =
(byte)clamp_0_255((int)(round_f(ImgSrc[i * StrideF + j])));
}
}
}
/**
**************************************************************************
* Memory deallocator, deletes aligned format frame.
*
* \param ptr [IN] - Pointer to the plane
*
* \return None
*/
void FreePlane(void *ptr) {
//#ifdef __ALLOW_ALIGNED_MEMORY_MANAGEMENT
// if (ptr)
// {
// _aligned_free(ptr);
// }
//#else
if (ptr) {
free(ptr);
}
//#endif
}
/**
**************************************************************************
* Performs addition of given value to each pixel in the plane
*
* \param Value [IN] - Value to add
* \param ImgSrcDst [IN/OUT] - Source float plane
* \param StrideF [IN] - Source plane stride
* \param Size [IN] - Size of area to copy
*
* \return None
*/
void AddFloatPlane(float Value, float *ImgSrcDst, int StrideF, ROI Size) {
for (int i = 0; i < Size.height; i++) {
for (int j = 0; j < Size.width; j++) {
ImgSrcDst[i * StrideF + j] += Value;
}
}
}
/**
**************************************************************************
* Performs multiplication of given value with each pixel in the plane
*
* \param Value [IN] - Value for multiplication
* \param ImgSrcDst [IN/OUT] - Source float plane
* \param StrideF [IN] - Source plane stride
* \param Size [IN] - Size of area to copy
*
* \return None
*/
void MulFloatPlane(float Value, float *ImgSrcDst, int StrideF, ROI Size) {
for (int i = 0; i < Size.height; i++) {
for (int j = 0; j < Size.width; j++) {
ImgSrcDst[i * StrideF + j] *= Value;
}
}
}
/**
**************************************************************************
* This function performs acquisition of image dimensions
*
* \param FileName [IN] - Image name to load
* \param Width [OUT] - Image width from file header
* \param Height [OUT] - Image height from file header
*
* \return Status code
*/
int PreLoadBmp(char *FileName, int *Width, int *Height) {
BMPFileHeader FileHeader;
BMPInfoHeader InfoHeader;
FILE *fh;
if (!(fh = fopen(FileName, "rb"))) {
return 1; // invalid filename
}
fread(&FileHeader, sizeof(BMPFileHeader), 1, fh);
if (FileHeader._bm_signature != 0x4D42) {
return 2; // invalid file format
}
fread(&InfoHeader, sizeof(BMPInfoHeader), 1, fh);
if (InfoHeader._bm_color_depth != 24) {
return 3; // invalid color depth
}
if (InfoHeader._bm_compressed) {
return 4; // invalid compression property
}
*Width = InfoHeader._bm_image_width;
*Height = InfoHeader._bm_image_height;
fclose(fh);
return 0;
}
/**
**************************************************************************
* This function performs loading of bitmap luma
*
* \param FileName [IN] - Image name to load
* \param Stride [IN] - Image stride
* \param ImSize [IN] - Image size
* \param Img [OUT] - Prepared buffer
*
* \return None
*/
void LoadBmpAsGray(char *FileName, int Stride, ROI ImSize, byte *Img) {
BMPFileHeader FileHeader;
BMPInfoHeader InfoHeader;
FILE *fh;
fh = fopen(FileName, "rb");
fread(&FileHeader, sizeof(BMPFileHeader), 1, fh);
fread(&InfoHeader, sizeof(BMPInfoHeader), 1, fh);
for (int i = ImSize.height - 1; i >= 0; i--) {
for (int j = 0; j < ImSize.width; j++) {
int r = 0, g = 0, b = 0;
fread(&b, 1, 1, fh);
fread(&g, 1, 1, fh);
fread(&r, 1, 1, fh);
int val = (313524 * r + 615514 * g + 119537 * b + 524288) >> 20;
Img[i * Stride + j] = (byte)clamp_0_255(val);
}
}
fclose(fh);
return;
}
/**
**************************************************************************
* This function performs dumping of bitmap luma on HDD
*
* \param FileName [OUT] - Image name to dump to
* \param Img [IN] - Image luma to dump
* \param Stride [IN] - Image stride
* \param ImSize [IN] - Image size
*
* \return None
*/
void DumpBmpAsGray(char *FileName, byte *Img, int Stride, ROI ImSize) {
FILE *fp = NULL;
fp = fopen(FileName, "wb");
if (fp == NULL) {
return;
}
BMPFileHeader FileHeader;
BMPInfoHeader InfoHeader;
// init headers
FileHeader._bm_signature = 0x4D42;
FileHeader._bm_file_size = 54 + 3 * ImSize.width * ImSize.height;
FileHeader._bm_reserved = 0;
FileHeader._bm_bitmap_data = 0x36;
InfoHeader._bm_bitmap_size = 0;
InfoHeader._bm_color_depth = 24;
InfoHeader._bm_compressed = 0;
InfoHeader._bm_hor_resolution = 0;
InfoHeader._bm_image_height = ImSize.height;
InfoHeader._bm_image_width = ImSize.width;
InfoHeader._bm_info_header_size = 40;
InfoHeader._bm_num_colors_used = 0;
InfoHeader._bm_num_important_colors = 0;
InfoHeader._bm_num_of_planes = 1;
InfoHeader._bm_ver_resolution = 0;
fwrite(&FileHeader, sizeof(BMPFileHeader), 1, fp);
fwrite(&InfoHeader, sizeof(BMPInfoHeader), 1, fp);
for (int i = ImSize.height - 1; i >= 0; i--) {
for (int j = 0; j < ImSize.width; j++) {
fwrite(&(Img[i * Stride + j]), 1, 1, fp);
fwrite(&(Img[i * Stride + j]), 1, 1, fp);
fwrite(&(Img[i * Stride + j]), 1, 1, fp);
}
}
fclose(fp);
}
/**
**************************************************************************
* This function performs dumping of 8x8 block from float plane
*
* \param PlaneF [IN] - Image plane
* \param StrideF [IN] - Image stride
* \param Fname [OUT] - File name to dump to
*
* \return None
*/
void DumpBlockF(float *PlaneF, int StrideF, char *Fname) {
FILE *fp = fopen(Fname, "wb");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
fprintf(fp, "%.*f ", 14, PlaneF[i * StrideF + j]);
}
fprintf(fp, "\n");
}
fclose(fp);
}
/**
**************************************************************************
* This function performs dumping of 8x8 block from byte plane
*
* \param Plane [IN] - Image plane
* \param Stride [IN] - Image stride
* \param Fname [OUT] - File name to dump to
*
* \return None
*/
void DumpBlock(byte *Plane, int Stride, char *Fname) {
FILE *fp = fopen(Fname, "wb");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
fprintf(fp, "%.3d ", Plane[i * Stride + j]);
}
fprintf(fp, "\n");
}
fclose(fp);
}
/**
**************************************************************************
* This function performs evaluation of Mean Square Error between two images
*
* \param Img1 [IN] - Image 1
* \param Img2 [IN] - Image 2
* \param Stride [IN] - Image stride
* \param Size [IN] - Image size
*
* \return Mean Square Error between images
*/
float CalculateMSE(byte *Img1, byte *Img2, int Stride, ROI Size) {
uint32 Acc = 0;
for (int i = 0; i < Size.height; i++) {
for (int j = 0; j < Size.width; j++) {
int TmpDiff = Img1[i * Stride + j] - Img2[i * Stride + j];
TmpDiff *= TmpDiff;
Acc += TmpDiff;
}
}
return ((float)Acc) / (Size.height * Size.width);
}
/**
**************************************************************************
* This function performs evaluation of Peak Signal to Noise Ratio between
* two images
*
* \param Img1 [IN] - Image 1
* \param Img2 [IN] - Image 2
* \param Stride [IN] - Image stride
* \param Size [IN] - Image size
*
* \return Peak Signal to Noise Ratio between images
*/
float CalculatePSNR(byte *Img1, byte *Img2, int Stride, ROI Size) {
float MSE = CalculateMSE(Img1, Img2, Stride, Size);
return 10 * log10(255 * 255 / MSE);
}