mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-12-01 13:29:15 +08:00
339 lines
13 KiB
C++
339 lines
13 KiB
C++
|
/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/* This sample queries the properties of the CUDA devices present in the system
|
||
|
* via CUDA Runtime API. */
|
||
|
|
||
|
// std::system includes
|
||
|
|
||
|
#include <cuda_runtime.h>
|
||
|
#include <helper_cuda.h>
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <memory>
|
||
|
#include <string>
|
||
|
|
||
|
int *pArgc = NULL;
|
||
|
char **pArgv = NULL;
|
||
|
|
||
|
#if CUDART_VERSION < 5000
|
||
|
|
||
|
// CUDA-C includes
|
||
|
#include <cuda.h>
|
||
|
|
||
|
// This function wraps the CUDA Driver API into a template function
|
||
|
template <class T>
|
||
|
inline void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute,
|
||
|
int device) {
|
||
|
CUresult error = cuDeviceGetAttribute(attribute, device_attribute, device);
|
||
|
|
||
|
if (CUDA_SUCCESS != error) {
|
||
|
fprintf(
|
||
|
stderr,
|
||
|
"cuSafeCallNoSync() Driver API error = %04d from file <%s>, line %i.\n",
|
||
|
error, __FILE__, __LINE__);
|
||
|
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* CUDART_VERSION < 5000 */
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Program main
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
int main(int argc, char **argv) {
|
||
|
pArgc = &argc;
|
||
|
pArgv = argv;
|
||
|
|
||
|
printf("%s Starting...\n\n", argv[0]);
|
||
|
printf(
|
||
|
" CUDA Device Query (Runtime API) version (CUDART static linking)\n\n");
|
||
|
|
||
|
int deviceCount = 0;
|
||
|
cudaError_t error_id = cudaGetDeviceCount(&deviceCount);
|
||
|
|
||
|
if (error_id != cudaSuccess) {
|
||
|
printf("cudaGetDeviceCount returned %d\n-> %s\n",
|
||
|
static_cast<int>(error_id), cudaGetErrorString(error_id));
|
||
|
printf("Result = FAIL\n");
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
// This function call returns 0 if there are no CUDA capable devices.
|
||
|
if (deviceCount == 0) {
|
||
|
printf("There are no available device(s) that support CUDA\n");
|
||
|
} else {
|
||
|
printf("Detected %d CUDA Capable device(s)\n", deviceCount);
|
||
|
}
|
||
|
|
||
|
int dev, driverVersion = 0, runtimeVersion = 0;
|
||
|
|
||
|
for (dev = 0; dev < deviceCount; ++dev) {
|
||
|
cudaSetDevice(dev);
|
||
|
cudaDeviceProp deviceProp;
|
||
|
cudaGetDeviceProperties(&deviceProp, dev);
|
||
|
|
||
|
printf("\nDevice %d: \"%s\"\n", dev, deviceProp.name);
|
||
|
|
||
|
// Console log
|
||
|
cudaDriverGetVersion(&driverVersion);
|
||
|
cudaRuntimeGetVersion(&runtimeVersion);
|
||
|
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n",
|
||
|
driverVersion / 1000, (driverVersion % 100) / 10,
|
||
|
runtimeVersion / 1000, (runtimeVersion % 100) / 10);
|
||
|
printf(" CUDA Capability Major/Minor version number: %d.%d\n",
|
||
|
deviceProp.major, deviceProp.minor);
|
||
|
|
||
|
char msg[256];
|
||
|
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
|
sprintf_s(msg, sizeof(msg),
|
||
|
" Total amount of global memory: %.0f MBytes "
|
||
|
"(%llu bytes)\n",
|
||
|
static_cast<float>(deviceProp.totalGlobalMem / 1048576.0f),
|
||
|
(unsigned long long)deviceProp.totalGlobalMem);
|
||
|
#else
|
||
|
snprintf(msg, sizeof(msg),
|
||
|
" Total amount of global memory: %.0f MBytes "
|
||
|
"(%llu bytes)\n",
|
||
|
static_cast<float>(deviceProp.totalGlobalMem / 1048576.0f),
|
||
|
(unsigned long long)deviceProp.totalGlobalMem);
|
||
|
#endif
|
||
|
printf("%s", msg);
|
||
|
|
||
|
printf(" (%2d) Multiprocessors, (%3d) CUDA Cores/MP: %d CUDA Cores\n",
|
||
|
deviceProp.multiProcessorCount,
|
||
|
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),
|
||
|
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
|
||
|
deviceProp.multiProcessorCount);
|
||
|
printf(
|
||
|
" GPU Max Clock rate: %.0f MHz (%0.2f "
|
||
|
"GHz)\n",
|
||
|
deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f);
|
||
|
|
||
|
#if CUDART_VERSION >= 5000
|
||
|
// This is supported in CUDA 5.0 (runtime API device properties)
|
||
|
printf(" Memory Clock rate: %.0f Mhz\n",
|
||
|
deviceProp.memoryClockRate * 1e-3f);
|
||
|
printf(" Memory Bus Width: %d-bit\n",
|
||
|
deviceProp.memoryBusWidth);
|
||
|
|
||
|
if (deviceProp.l2CacheSize) {
|
||
|
printf(" L2 Cache Size: %d bytes\n",
|
||
|
deviceProp.l2CacheSize);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
// This only available in CUDA 4.0-4.2 (but these were only exposed in the
|
||
|
// CUDA Driver API)
|
||
|
int memoryClock;
|
||
|
getCudaAttribute<int>(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE,
|
||
|
dev);
|
||
|
printf(" Memory Clock rate: %.0f Mhz\n",
|
||
|
memoryClock * 1e-3f);
|
||
|
int memBusWidth;
|
||
|
getCudaAttribute<int>(&memBusWidth,
|
||
|
CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev);
|
||
|
printf(" Memory Bus Width: %d-bit\n",
|
||
|
memBusWidth);
|
||
|
int L2CacheSize;
|
||
|
getCudaAttribute<int>(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev);
|
||
|
|
||
|
if (L2CacheSize) {
|
||
|
printf(" L2 Cache Size: %d bytes\n",
|
||
|
L2CacheSize);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
printf(
|
||
|
" Maximum Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d, "
|
||
|
"%d), 3D=(%d, %d, %d)\n",
|
||
|
deviceProp.maxTexture1D, deviceProp.maxTexture2D[0],
|
||
|
deviceProp.maxTexture2D[1], deviceProp.maxTexture3D[0],
|
||
|
deviceProp.maxTexture3D[1], deviceProp.maxTexture3D[2]);
|
||
|
printf(
|
||
|
" Maximum Layered 1D Texture Size, (num) layers 1D=(%d), %d layers\n",
|
||
|
deviceProp.maxTexture1DLayered[0], deviceProp.maxTexture1DLayered[1]);
|
||
|
printf(
|
||
|
" Maximum Layered 2D Texture Size, (num) layers 2D=(%d, %d), %d "
|
||
|
"layers\n",
|
||
|
deviceProp.maxTexture2DLayered[0], deviceProp.maxTexture2DLayered[1],
|
||
|
deviceProp.maxTexture2DLayered[2]);
|
||
|
|
||
|
printf(" Total amount of constant memory: %lu bytes\n",
|
||
|
deviceProp.totalConstMem);
|
||
|
printf(" Total amount of shared memory per block: %lu bytes\n",
|
||
|
deviceProp.sharedMemPerBlock);
|
||
|
printf(" Total number of registers available per block: %d\n",
|
||
|
deviceProp.regsPerBlock);
|
||
|
printf(" Warp size: %d\n",
|
||
|
deviceProp.warpSize);
|
||
|
printf(" Maximum number of threads per multiprocessor: %d\n",
|
||
|
deviceProp.maxThreadsPerMultiProcessor);
|
||
|
printf(" Maximum number of threads per block: %d\n",
|
||
|
deviceProp.maxThreadsPerBlock);
|
||
|
printf(" Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n",
|
||
|
deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1],
|
||
|
deviceProp.maxThreadsDim[2]);
|
||
|
printf(" Max dimension size of a grid size (x,y,z): (%d, %d, %d)\n",
|
||
|
deviceProp.maxGridSize[0], deviceProp.maxGridSize[1],
|
||
|
deviceProp.maxGridSize[2]);
|
||
|
printf(" Maximum memory pitch: %lu bytes\n",
|
||
|
deviceProp.memPitch);
|
||
|
printf(" Texture alignment: %lu bytes\n",
|
||
|
deviceProp.textureAlignment);
|
||
|
printf(
|
||
|
" Concurrent copy and kernel execution: %s with %d copy "
|
||
|
"engine(s)\n",
|
||
|
(deviceProp.deviceOverlap ? "Yes" : "No"), deviceProp.asyncEngineCount);
|
||
|
printf(" Run time limit on kernels: %s\n",
|
||
|
deviceProp.kernelExecTimeoutEnabled ? "Yes" : "No");
|
||
|
printf(" Integrated GPU sharing Host Memory: %s\n",
|
||
|
deviceProp.integrated ? "Yes" : "No");
|
||
|
printf(" Support host page-locked memory mapping: %s\n",
|
||
|
deviceProp.canMapHostMemory ? "Yes" : "No");
|
||
|
printf(" Alignment requirement for Surfaces: %s\n",
|
||
|
deviceProp.surfaceAlignment ? "Yes" : "No");
|
||
|
printf(" Device has ECC support: %s\n",
|
||
|
deviceProp.ECCEnabled ? "Enabled" : "Disabled");
|
||
|
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
|
printf(" CUDA Device Driver Mode (TCC or WDDM): %s\n",
|
||
|
deviceProp.tccDriver ? "TCC (Tesla Compute Cluster Driver)"
|
||
|
: "WDDM (Windows Display Driver Model)");
|
||
|
#endif
|
||
|
printf(" Device supports Unified Addressing (UVA): %s\n",
|
||
|
deviceProp.unifiedAddressing ? "Yes" : "No");
|
||
|
printf(" Device supports Compute Preemption: %s\n",
|
||
|
deviceProp.computePreemptionSupported ? "Yes" : "No");
|
||
|
printf(" Supports Cooperative Kernel Launch: %s\n",
|
||
|
deviceProp.cooperativeLaunch ? "Yes" : "No");
|
||
|
printf(" Supports MultiDevice Co-op Kernel Launch: %s\n",
|
||
|
deviceProp.cooperativeMultiDeviceLaunch ? "Yes" : "No");
|
||
|
printf(" Device PCI Domain ID / Bus ID / location ID: %d / %d / %d\n",
|
||
|
deviceProp.pciDomainID, deviceProp.pciBusID, deviceProp.pciDeviceID);
|
||
|
|
||
|
const char *sComputeMode[] = {
|
||
|
"Default (multiple host threads can use ::cudaSetDevice() with device "
|
||
|
"simultaneously)",
|
||
|
"Exclusive (only one host thread in one process is able to use "
|
||
|
"::cudaSetDevice() with this device)",
|
||
|
"Prohibited (no host thread can use ::cudaSetDevice() with this "
|
||
|
"device)",
|
||
|
"Exclusive Process (many threads in one process is able to use "
|
||
|
"::cudaSetDevice() with this device)",
|
||
|
"Unknown",
|
||
|
NULL};
|
||
|
printf(" Compute Mode:\n");
|
||
|
printf(" < %s >\n", sComputeMode[deviceProp.computeMode]);
|
||
|
}
|
||
|
|
||
|
// If there are 2 or more GPUs, query to determine whether RDMA is supported
|
||
|
if (deviceCount >= 2) {
|
||
|
cudaDeviceProp prop[64];
|
||
|
int gpuid[64]; // we want to find the first two GPUs that can support P2P
|
||
|
int gpu_p2p_count = 0;
|
||
|
|
||
|
for (int i = 0; i < deviceCount; i++) {
|
||
|
checkCudaErrors(cudaGetDeviceProperties(&prop[i], i));
|
||
|
|
||
|
// Only boards based on Fermi or later can support P2P
|
||
|
if ((prop[i].major >= 2)
|
||
|
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
|
// on Windows (64-bit), the Tesla Compute Cluster driver for windows
|
||
|
// must be enabled to support this
|
||
|
&& prop[i].tccDriver
|
||
|
#endif
|
||
|
) {
|
||
|
// This is an array of P2P capable GPUs
|
||
|
gpuid[gpu_p2p_count++] = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Show all the combinations of support P2P GPUs
|
||
|
int can_access_peer;
|
||
|
|
||
|
if (gpu_p2p_count >= 2) {
|
||
|
for (int i = 0; i < gpu_p2p_count; i++) {
|
||
|
for (int j = 0; j < gpu_p2p_count; j++) {
|
||
|
if (gpuid[i] == gpuid[j]) {
|
||
|
continue;
|
||
|
}
|
||
|
checkCudaErrors(
|
||
|
cudaDeviceCanAccessPeer(&can_access_peer, gpuid[i], gpuid[j]));
|
||
|
printf("> Peer access from %s (GPU%d) -> %s (GPU%d) : %s\n",
|
||
|
prop[gpuid[i]].name, gpuid[i], prop[gpuid[j]].name, gpuid[j],
|
||
|
can_access_peer ? "Yes" : "No");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// csv masterlog info
|
||
|
// *****************************
|
||
|
// exe and CUDA driver name
|
||
|
printf("\n");
|
||
|
std::string sProfileString = "deviceQuery, CUDA Driver = CUDART";
|
||
|
char cTemp[16];
|
||
|
|
||
|
// driver version
|
||
|
sProfileString += ", CUDA Driver Version = ";
|
||
|
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
|
sprintf_s(cTemp, 10, "%d.%d", driverVersion/1000, (driverVersion%100)/10);
|
||
|
#else
|
||
|
snprintf(cTemp, sizeof(cTemp), "%d.%d", driverVersion / 1000,
|
||
|
(driverVersion % 100) / 10);
|
||
|
#endif
|
||
|
sProfileString += cTemp;
|
||
|
|
||
|
// Runtime version
|
||
|
sProfileString += ", CUDA Runtime Version = ";
|
||
|
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
|
sprintf_s(cTemp, 10, "%d.%d", runtimeVersion/1000, (runtimeVersion%100)/10);
|
||
|
#else
|
||
|
snprintf(cTemp, sizeof(cTemp), "%d.%d", runtimeVersion / 1000,
|
||
|
(runtimeVersion % 100) / 10);
|
||
|
#endif
|
||
|
sProfileString += cTemp;
|
||
|
|
||
|
// Device count
|
||
|
sProfileString += ", NumDevs = ";
|
||
|
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
|
sprintf_s(cTemp, 10, "%d", deviceCount);
|
||
|
#else
|
||
|
snprintf(cTemp, sizeof(cTemp), "%d", deviceCount);
|
||
|
#endif
|
||
|
sProfileString += cTemp;
|
||
|
sProfileString += "\n";
|
||
|
printf("%s", sProfileString.c_str());
|
||
|
|
||
|
printf("Result = PASS\n");
|
||
|
|
||
|
// finish
|
||
|
exit(EXIT_SUCCESS);
|
||
|
}
|