mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-25 02:19:19 +08:00
501 lines
14 KiB
Plaintext
501 lines
14 KiB
Plaintext
|
/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This sample implements a conjugate gradient solver on GPU using
|
||
|
* Multi Block Cooperative Groups, also uses Unified Memory.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
// includes, system
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
// Utilities and system includes
|
||
|
#include <helper_cuda.h> // helper function CUDA error checking and initialization
|
||
|
#include <helper_functions.h> // helper for shared functions common to CUDA Samples
|
||
|
|
||
|
#include <cooperative_groups.h>
|
||
|
|
||
|
namespace cg = cooperative_groups;
|
||
|
|
||
|
const char *sSDKname = "conjugateGradientMultiBlockCG";
|
||
|
|
||
|
#define ENABLE_CPU_DEBUG_CODE 0
|
||
|
#define THREADS_PER_BLOCK 512
|
||
|
|
||
|
/* genTridiag: generate a random tridiagonal symmetric matrix */
|
||
|
void genTridiag(int *I, int *J, float *val, int N, int nz) {
|
||
|
I[0] = 0, J[0] = 0, J[1] = 1;
|
||
|
val[0] = static_cast<float>(rand()) / RAND_MAX + 10.0f;
|
||
|
val[1] = static_cast<float>(rand()) / RAND_MAX;
|
||
|
int start;
|
||
|
|
||
|
for (int i = 1; i < N; i++) {
|
||
|
if (i > 1) {
|
||
|
I[i] = I[i - 1] + 3;
|
||
|
} else {
|
||
|
I[1] = 2;
|
||
|
}
|
||
|
|
||
|
start = (i - 1) * 3 + 2;
|
||
|
J[start] = i - 1;
|
||
|
J[start + 1] = i;
|
||
|
|
||
|
if (i < N - 1) {
|
||
|
J[start + 2] = i + 1;
|
||
|
}
|
||
|
|
||
|
val[start] = val[start - 1];
|
||
|
val[start + 1] = static_cast<float>(rand()) / RAND_MAX + 10.0f;
|
||
|
|
||
|
if (i < N - 1) {
|
||
|
val[start + 2] = static_cast<float>(rand()) / RAND_MAX;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
I[N] = nz;
|
||
|
}
|
||
|
|
||
|
// I - contains location of the given non-zero element in the row of the matrix
|
||
|
// J - contains location of the given non-zero element in the column of the
|
||
|
// matrix val - contains values of the given non-zero elements of the matrix
|
||
|
// inputVecX - input vector to be multiplied
|
||
|
// outputVecY - resultant vector
|
||
|
void cpuSpMV(int *I, int *J, float *val, int nnz, int num_rows, float alpha,
|
||
|
float *inputVecX, float *outputVecY) {
|
||
|
for (int i = 0; i < num_rows; i++) {
|
||
|
int num_elems_this_row = I[i + 1] - I[i];
|
||
|
|
||
|
float output = 0.0;
|
||
|
for (int j = 0; j < num_elems_this_row; j++) {
|
||
|
output += alpha * val[I[i] + j] * inputVecX[J[I[i] + j]];
|
||
|
}
|
||
|
outputVecY[i] = output;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
double dotProduct(float *vecA, float *vecB, int size) {
|
||
|
double result = 0.0;
|
||
|
|
||
|
for (int i = 0; i < size; i++) {
|
||
|
result = result + (vecA[i] * vecB[i]);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
void scaleVector(float *vec, float alpha, int size) {
|
||
|
for (int i = 0; i < size; i++) {
|
||
|
vec[i] = alpha * vec[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void saxpy(float *x, float *y, float a, int size) {
|
||
|
for (int i = 0; i < size; i++) {
|
||
|
y[i] = a * x[i] + y[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cpuConjugateGrad(int *I, int *J, float *val, float *x, float *Ax, float *p,
|
||
|
float *r, int nnz, int N, float tol) {
|
||
|
int max_iter = 10000;
|
||
|
|
||
|
float alpha = 1.0;
|
||
|
float alpham1 = -1.0;
|
||
|
float r0 = 0.0, b, a, na;
|
||
|
|
||
|
cpuSpMV(I, J, val, nnz, N, alpha, x, Ax);
|
||
|
saxpy(Ax, r, alpham1, N);
|
||
|
|
||
|
float r1 = dotProduct(r, r, N);
|
||
|
|
||
|
int k = 1;
|
||
|
|
||
|
while (r1 > tol * tol && k <= max_iter) {
|
||
|
if (k > 1) {
|
||
|
b = r1 / r0;
|
||
|
scaleVector(p, b, N);
|
||
|
|
||
|
saxpy(r, p, alpha, N);
|
||
|
} else {
|
||
|
for (int i = 0; i < N; i++) p[i] = r[i];
|
||
|
}
|
||
|
|
||
|
cpuSpMV(I, J, val, nnz, N, alpha, p, Ax);
|
||
|
|
||
|
float dot = dotProduct(p, Ax, N);
|
||
|
a = r1 / dot;
|
||
|
|
||
|
saxpy(p, x, a, N);
|
||
|
na = -a;
|
||
|
saxpy(Ax, r, na, N);
|
||
|
|
||
|
r0 = r1;
|
||
|
r1 = dotProduct(r, r, N);
|
||
|
|
||
|
printf("\nCPU code iteration = %3d, residual = %e\n", k, sqrt(r1));
|
||
|
k++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__device__ void gpuSpMV(int *I, int *J, float *val, int nnz, int num_rows,
|
||
|
float alpha, float *inputVecX, float *outputVecY,
|
||
|
cg::thread_block &cta, const cg::grid_group &grid) {
|
||
|
for (int i = grid.thread_rank(); i < num_rows; i += grid.size()) {
|
||
|
int row_elem = I[i];
|
||
|
int next_row_elem = I[i + 1];
|
||
|
int num_elems_this_row = next_row_elem - row_elem;
|
||
|
|
||
|
float output = 0.0;
|
||
|
for (int j = 0; j < num_elems_this_row; j++) {
|
||
|
// I or J or val arrays - can be put in shared memory
|
||
|
// as the access is random and reused in next calls of gpuSpMV function.
|
||
|
output += alpha * val[row_elem + j] * inputVecX[J[row_elem + j]];
|
||
|
}
|
||
|
|
||
|
outputVecY[i] = output;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__device__ void gpuSaxpy(float *x, float *y, float a, int size,
|
||
|
const cg::grid_group &grid) {
|
||
|
for (int i = grid.thread_rank(); i < size; i += grid.size()) {
|
||
|
y[i] = a * x[i] + y[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__device__ void gpuDotProduct(float *vecA, float *vecB, double *result,
|
||
|
int size, const cg::thread_block &cta,
|
||
|
const cg::grid_group &grid) {
|
||
|
__shared__ double tmp[THREADS_PER_BLOCK];
|
||
|
|
||
|
double temp_sum = 0.0;
|
||
|
for (int i = grid.thread_rank(); i < size; i += grid.size()) {
|
||
|
temp_sum += static_cast<double>(vecA[i] * vecB[i]);
|
||
|
}
|
||
|
tmp[cta.thread_rank()] = temp_sum;
|
||
|
|
||
|
cg::sync(cta);
|
||
|
|
||
|
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
|
||
|
|
||
|
double beta = temp_sum;
|
||
|
double temp;
|
||
|
|
||
|
for (int i = tile32.size() / 2; i > 0; i >>= 1) {
|
||
|
if (tile32.thread_rank() < i) {
|
||
|
temp = tmp[cta.thread_rank() + i];
|
||
|
beta += temp;
|
||
|
tmp[cta.thread_rank()] = beta;
|
||
|
}
|
||
|
cg::sync(tile32);
|
||
|
}
|
||
|
cg::sync(cta);
|
||
|
|
||
|
if (cta.thread_rank() == 0) {
|
||
|
beta = 0.0;
|
||
|
for (int i = 0; i < cta.size(); i += tile32.size()) {
|
||
|
beta += tmp[i];
|
||
|
}
|
||
|
atomicAdd(result, beta);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__device__ void gpuCopyVector(float *srcA, float *destB, int size,
|
||
|
const cg::grid_group &grid) {
|
||
|
for (int i = grid.thread_rank(); i < size; i += grid.size()) {
|
||
|
destB[i] = srcA[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__device__ void gpuScaleVector(float *vec, float alpha, int size,
|
||
|
const cg::grid_group &grid) {
|
||
|
for (int i = grid.thread_rank(); i < size; i += grid.size()) {
|
||
|
vec[i] = alpha * vec[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
extern "C" __global__ void gpuConjugateGradient(int *I, int *J, float *val,
|
||
|
float *x, float *Ax, float *p,
|
||
|
float *r, double *dot_result,
|
||
|
int nnz, int N, float tol) {
|
||
|
cg::thread_block cta = cg::this_thread_block();
|
||
|
cg::grid_group grid = cg::this_grid();
|
||
|
|
||
|
int max_iter = 10000;
|
||
|
|
||
|
float alpha = 1.0;
|
||
|
float alpham1 = -1.0;
|
||
|
float r0 = 0.0, r1, b, a, na;
|
||
|
|
||
|
gpuSpMV(I, J, val, nnz, N, alpha, x, Ax, cta, grid);
|
||
|
|
||
|
cg::sync(grid);
|
||
|
|
||
|
gpuSaxpy(Ax, r, alpham1, N, grid);
|
||
|
|
||
|
cg::sync(grid);
|
||
|
|
||
|
gpuDotProduct(r, r, dot_result, N, cta, grid);
|
||
|
|
||
|
cg::sync(grid);
|
||
|
|
||
|
r1 = *dot_result;
|
||
|
|
||
|
int k = 1;
|
||
|
while (r1 > tol * tol && k <= max_iter) {
|
||
|
if (k > 1) {
|
||
|
b = r1 / r0;
|
||
|
gpuScaleVector(p, b, N, grid);
|
||
|
|
||
|
cg::sync(grid);
|
||
|
gpuSaxpy(r, p, alpha, N, grid);
|
||
|
} else {
|
||
|
gpuCopyVector(r, p, N, grid);
|
||
|
}
|
||
|
|
||
|
cg::sync(grid);
|
||
|
|
||
|
gpuSpMV(I, J, val, nnz, N, alpha, p, Ax, cta, grid);
|
||
|
|
||
|
if (threadIdx.x == 0 && blockIdx.x == 0) *dot_result = 0.0;
|
||
|
|
||
|
cg::sync(grid);
|
||
|
|
||
|
gpuDotProduct(p, Ax, dot_result, N, cta, grid);
|
||
|
|
||
|
cg::sync(grid);
|
||
|
|
||
|
a = r1 / *dot_result;
|
||
|
|
||
|
gpuSaxpy(p, x, a, N, grid);
|
||
|
na = -a;
|
||
|
gpuSaxpy(Ax, r, na, N, grid);
|
||
|
|
||
|
r0 = r1;
|
||
|
|
||
|
if (threadIdx.x == 0 && blockIdx.x == 0) *dot_result = 0.0;
|
||
|
|
||
|
cg::sync(grid);
|
||
|
|
||
|
gpuDotProduct(r, r, dot_result, N, cta, grid);
|
||
|
|
||
|
cg::sync(grid);
|
||
|
|
||
|
r1 = *dot_result;
|
||
|
k++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool areAlmostEqual(float a, float b, float maxRelDiff) {
|
||
|
float diff = fabsf(a - b);
|
||
|
float abs_a = fabsf(a);
|
||
|
float abs_b = fabsf(b);
|
||
|
float largest = abs_a > abs_b ? abs_a : abs_b;
|
||
|
|
||
|
if (diff <= largest * maxRelDiff) {
|
||
|
return true;
|
||
|
} else {
|
||
|
printf("maxRelDiff = %.8e\n", maxRelDiff);
|
||
|
printf(
|
||
|
"diff %.8e > largest * maxRelDiff %.8e therefore %.8e and %.8e are not "
|
||
|
"same\n",
|
||
|
diff, largest * maxRelDiff, a, b);
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, char **argv) {
|
||
|
int N = 0, nz = 0, *I = NULL, *J = NULL;
|
||
|
float *val = NULL;
|
||
|
const float tol = 1e-5f;
|
||
|
float *x;
|
||
|
float *rhs;
|
||
|
float r1;
|
||
|
float *r, *p, *Ax;
|
||
|
cudaEvent_t start, stop;
|
||
|
|
||
|
printf("Starting [%s]...\n", sSDKname);
|
||
|
|
||
|
// This will pick the best possible CUDA capable device
|
||
|
cudaDeviceProp deviceProp;
|
||
|
int devID = findCudaDevice(argc, (const char **)argv);
|
||
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
|
||
|
|
||
|
if (!deviceProp.managedMemory) {
|
||
|
// This sample requires being run on a device that supports Unified Memory
|
||
|
fprintf(stderr, "Unified Memory not supported on this device\n");
|
||
|
exit(EXIT_WAIVED);
|
||
|
}
|
||
|
|
||
|
// This sample requires being run on a device that supports Cooperative Kernel
|
||
|
// Launch
|
||
|
if (!deviceProp.cooperativeLaunch) {
|
||
|
printf(
|
||
|
"\nSelected GPU (%d) does not support Cooperative Kernel Launch, "
|
||
|
"Waiving the run\n",
|
||
|
devID);
|
||
|
exit(EXIT_WAIVED);
|
||
|
}
|
||
|
|
||
|
// Statistics about the GPU device
|
||
|
printf(
|
||
|
"> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
|
||
|
deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);
|
||
|
|
||
|
/* Generate a random tridiagonal symmetric matrix in CSR format */
|
||
|
N = 1048576;
|
||
|
nz = (N - 2) * 3 + 4;
|
||
|
|
||
|
cudaMallocManaged(reinterpret_cast<void **>(&I), sizeof(int) * (N + 1));
|
||
|
cudaMallocManaged(reinterpret_cast<void **>(&J), sizeof(int) * nz);
|
||
|
cudaMallocManaged(reinterpret_cast<void **>(&val), sizeof(float) * nz);
|
||
|
|
||
|
genTridiag(I, J, val, N, nz);
|
||
|
|
||
|
cudaMallocManaged(reinterpret_cast<void **>(&x), sizeof(float) * N);
|
||
|
cudaMallocManaged(reinterpret_cast<void **>(&rhs), sizeof(float) * N);
|
||
|
|
||
|
double *dot_result;
|
||
|
|
||
|
cudaMallocManaged(reinterpret_cast<void **>(&dot_result), sizeof(double));
|
||
|
|
||
|
*dot_result = 0.0;
|
||
|
|
||
|
// temp memory for CG
|
||
|
checkCudaErrors(
|
||
|
cudaMallocManaged(reinterpret_cast<void **>(&r), N * sizeof(float)));
|
||
|
checkCudaErrors(
|
||
|
cudaMallocManaged(reinterpret_cast<void **>(&p), N * sizeof(float)));
|
||
|
checkCudaErrors(
|
||
|
cudaMallocManaged(reinterpret_cast<void **>(&Ax), N * sizeof(float)));
|
||
|
|
||
|
cudaDeviceSynchronize();
|
||
|
|
||
|
checkCudaErrors(cudaEventCreate(&start));
|
||
|
checkCudaErrors(cudaEventCreate(&stop));
|
||
|
|
||
|
#if ENABLE_CPU_DEBUG_CODE
|
||
|
float *Ax_cpu = reinterpret_cast<float *>(malloc(sizeof(float) * N));
|
||
|
float *r_cpu = reinterpret_cast<float *>(malloc(sizeof(float) * N));
|
||
|
float *p_cpu = reinterpret_cast<float *>(malloc(sizeof(float) * N));
|
||
|
float *x_cpu = reinterpret_cast<float *>(malloc(sizeof(float) * N));
|
||
|
|
||
|
for (int i = 0; i < N; i++) {
|
||
|
r_cpu[i] = 1.0;
|
||
|
Ax_cpu[i] = x_cpu[i] = 0.0;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
for (int i = 0; i < N; i++) {
|
||
|
r[i] = rhs[i] = 1.0;
|
||
|
x[i] = 0.0;
|
||
|
}
|
||
|
|
||
|
void *kernelArgs[] = {
|
||
|
(void *)&I, (void *)&J, (void *)&val, (void *)&x,
|
||
|
(void *)&Ax, (void *)&p, (void *)&r, (void *)&dot_result,
|
||
|
(void *)&nz, (void *)&N, (void *)&tol,
|
||
|
};
|
||
|
|
||
|
int sMemSize = sizeof(double) * THREADS_PER_BLOCK;
|
||
|
int numBlocksPerSm = 0;
|
||
|
int numThreads = THREADS_PER_BLOCK;
|
||
|
|
||
|
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
|
||
|
&numBlocksPerSm, gpuConjugateGradient, numThreads, sMemSize));
|
||
|
|
||
|
int numSms = deviceProp.multiProcessorCount;
|
||
|
dim3 dimGrid(numSms * numBlocksPerSm, 1, 1),
|
||
|
dimBlock(THREADS_PER_BLOCK, 1, 1);
|
||
|
checkCudaErrors(cudaEventRecord(start, 0));
|
||
|
checkCudaErrors(cudaLaunchCooperativeKernel((void *)gpuConjugateGradient,
|
||
|
dimGrid, dimBlock, kernelArgs,
|
||
|
sMemSize, NULL));
|
||
|
checkCudaErrors(cudaEventRecord(stop, 0));
|
||
|
checkCudaErrors(cudaDeviceSynchronize());
|
||
|
|
||
|
float time;
|
||
|
checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
|
||
|
|
||
|
r1 = *dot_result;
|
||
|
|
||
|
printf("GPU Final, residual = %e, kernel execution time = %f ms\n", sqrt(r1),
|
||
|
time);
|
||
|
|
||
|
#if ENABLE_CPU_DEBUG_CODE
|
||
|
cpuConjugateGrad(I, J, val, x_cpu, Ax_cpu, p_cpu, r_cpu, nz, N, tol);
|
||
|
#endif
|
||
|
|
||
|
float rsum, diff, err = 0.0;
|
||
|
|
||
|
for (int i = 0; i < N; i++) {
|
||
|
rsum = 0.0;
|
||
|
|
||
|
for (int j = I[i]; j < I[i + 1]; j++) {
|
||
|
rsum += val[j] * x[J[j]];
|
||
|
}
|
||
|
|
||
|
diff = fabs(rsum - rhs[i]);
|
||
|
|
||
|
if (diff > err) {
|
||
|
err = diff;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
checkCudaErrors(cudaFree(I));
|
||
|
checkCudaErrors(cudaFree(J));
|
||
|
checkCudaErrors(cudaFree(val));
|
||
|
checkCudaErrors(cudaFree(x));
|
||
|
checkCudaErrors(cudaFree(rhs));
|
||
|
checkCudaErrors(cudaFree(r));
|
||
|
checkCudaErrors(cudaFree(p));
|
||
|
checkCudaErrors(cudaFree(Ax));
|
||
|
checkCudaErrors(cudaFree(dot_result));
|
||
|
checkCudaErrors(cudaEventDestroy(start));
|
||
|
checkCudaErrors(cudaEventDestroy(stop));
|
||
|
|
||
|
#if ENABLE_CPU_DEBUG_CODE
|
||
|
free(Ax_cpu);
|
||
|
free(r_cpu);
|
||
|
free(p_cpu);
|
||
|
free(x_cpu);
|
||
|
#endif
|
||
|
|
||
|
printf("Test Summary: Error amount = %f \n", err);
|
||
|
fprintf(stdout, "&&&& conjugateGradientMultiBlockCG %s\n",
|
||
|
(sqrt(r1) < tol) ? "PASSED" : "FAILED");
|
||
|
exit((sqrt(r1) < tol) ? EXIT_SUCCESS : EXIT_FAILURE);
|
||
|
}
|