2022-01-13 14:05:24 +08:00
|
|
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2021-10-21 19:04:49 +08:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This sample demonstrates how to use texture fetches from layered 2D textures
|
|
|
|
* in CUDA C
|
|
|
|
*
|
|
|
|
* This sample first generates a 3D input data array for the layered texture
|
|
|
|
* and the expected output. Then it starts CUDA C kernels, one for each layer,
|
|
|
|
* which fetch their layer's texture data (using normalized texture coordinates)
|
|
|
|
* transform it to the expected output, and write it to a 3D output data array.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// includes, system
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
// includes, kernels
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
|
|
|
|
// includes, project
|
|
|
|
#include <helper_cuda.h>
|
|
|
|
#include <helper_functions.h> // helper for shared that are common to CUDA Samples
|
|
|
|
|
|
|
|
static const char *sSDKname = "simpleLayeredTexture";
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//! Transform a layer of a layered 2D texture using texture lookups
|
|
|
|
//! @param g_odata output data in global memory
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
__global__ void transformKernel(float *g_odata, int width, int height,
|
|
|
|
int layer, cudaTextureObject_t tex) {
|
|
|
|
// calculate this thread's data point
|
|
|
|
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
|
|
|
|
// 0.5f offset and division are necessary to access the original data points
|
|
|
|
// in the texture (such that bilinear interpolation will not be activated).
|
|
|
|
// For details, see also CUDA Programming Guide, Appendix D
|
|
|
|
float u = (x + 0.5f) / (float)width;
|
|
|
|
float v = (y + 0.5f) / (float)height;
|
|
|
|
|
|
|
|
// read from texture, do expected transformation and write to global memory
|
|
|
|
g_odata[layer * width * height + y * width + x] =
|
|
|
|
-tex2DLayered<float>(tex, u, v, layer) + layer;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Program main
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int main(int argc, char **argv) {
|
|
|
|
printf("[%s] - Starting...\n", sSDKname);
|
|
|
|
|
|
|
|
// use command-line specified CUDA device, otherwise use device with highest
|
|
|
|
// Gflops/s
|
|
|
|
int devID = findCudaDevice(argc, (const char **)argv);
|
|
|
|
|
|
|
|
bool bResult = true;
|
|
|
|
|
|
|
|
// get number of SMs on this GPU
|
|
|
|
cudaDeviceProp deviceProps;
|
|
|
|
|
|
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID));
|
|
|
|
printf("CUDA device [%s] has %d Multi-Processors ", deviceProps.name,
|
|
|
|
deviceProps.multiProcessorCount);
|
|
|
|
printf("SM %d.%d\n", deviceProps.major, deviceProps.minor);
|
|
|
|
|
|
|
|
// generate input data for layered texture
|
|
|
|
unsigned int width = 512, height = 512, num_layers = 5;
|
|
|
|
unsigned int size = width * height * num_layers * sizeof(float);
|
|
|
|
float *h_data = (float *)malloc(size);
|
|
|
|
|
|
|
|
for (unsigned int layer = 0; layer < num_layers; layer++)
|
|
|
|
for (int i = 0; i < (int)(width * height); i++) {
|
|
|
|
h_data[layer * width * height + i] = (float)i;
|
|
|
|
}
|
|
|
|
|
|
|
|
// this is the expected transformation of the input data (the expected output)
|
|
|
|
float *h_data_ref = (float *)malloc(size);
|
|
|
|
|
|
|
|
for (unsigned int layer = 0; layer < num_layers; layer++)
|
|
|
|
for (int i = 0; i < (int)(width * height); i++) {
|
|
|
|
h_data_ref[layer * width * height + i] =
|
|
|
|
-h_data[layer * width * height + i] + layer;
|
|
|
|
}
|
|
|
|
|
|
|
|
// allocate device memory for result
|
|
|
|
float *d_data = NULL;
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&d_data, size));
|
|
|
|
|
|
|
|
// allocate array and copy image data
|
|
|
|
cudaChannelFormatDesc channelDesc =
|
|
|
|
cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
|
|
|
|
cudaArray *cu_3darray;
|
|
|
|
checkCudaErrors(cudaMalloc3DArray(&cu_3darray, &channelDesc,
|
|
|
|
make_cudaExtent(width, height, num_layers),
|
|
|
|
cudaArrayLayered));
|
|
|
|
cudaMemcpy3DParms myparms = {0};
|
|
|
|
myparms.srcPos = make_cudaPos(0, 0, 0);
|
|
|
|
myparms.dstPos = make_cudaPos(0, 0, 0);
|
|
|
|
myparms.srcPtr =
|
|
|
|
make_cudaPitchedPtr(h_data, width * sizeof(float), width, height);
|
|
|
|
myparms.dstArray = cu_3darray;
|
|
|
|
myparms.extent = make_cudaExtent(width, height, num_layers);
|
|
|
|
myparms.kind = cudaMemcpyHostToDevice;
|
|
|
|
checkCudaErrors(cudaMemcpy3D(&myparms));
|
|
|
|
|
|
|
|
cudaTextureObject_t tex;
|
|
|
|
cudaResourceDesc texRes;
|
|
|
|
memset(&texRes, 0, sizeof(cudaResourceDesc));
|
|
|
|
|
|
|
|
texRes.resType = cudaResourceTypeArray;
|
|
|
|
texRes.res.array.array = cu_3darray;
|
|
|
|
|
|
|
|
cudaTextureDesc texDescr;
|
|
|
|
memset(&texDescr, 0, sizeof(cudaTextureDesc));
|
|
|
|
|
|
|
|
texDescr.normalizedCoords = true;
|
|
|
|
texDescr.filterMode = cudaFilterModeLinear;
|
|
|
|
texDescr.addressMode[0] = cudaAddressModeWrap;
|
|
|
|
texDescr.addressMode[1] = cudaAddressModeWrap;
|
|
|
|
texDescr.readMode = cudaReadModeElementType;
|
|
|
|
|
|
|
|
checkCudaErrors(cudaCreateTextureObject(&tex, &texRes, &texDescr, NULL));
|
|
|
|
|
|
|
|
dim3 dimBlock(8, 8, 1);
|
|
|
|
dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
|
|
|
|
|
|
|
|
printf(
|
|
|
|
"Covering 2D data array of %d x %d: Grid size is %d x %d, each block has "
|
|
|
|
"8 x 8 threads\n",
|
|
|
|
width, height, dimGrid.x, dimGrid.y);
|
|
|
|
|
|
|
|
transformKernel<<<dimGrid, dimBlock>>>(d_data, width, height, 0,
|
|
|
|
tex); // warmup (for better timing)
|
|
|
|
|
|
|
|
// check if kernel execution generated an error
|
|
|
|
getLastCudaError("warmup Kernel execution failed");
|
|
|
|
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
|
|
|
|
StopWatchInterface *timer = NULL;
|
|
|
|
sdkCreateTimer(&timer);
|
|
|
|
sdkStartTimer(&timer);
|
|
|
|
|
|
|
|
// execute the kernel
|
|
|
|
for (unsigned int layer = 0; layer < num_layers; layer++)
|
|
|
|
transformKernel<<<dimGrid, dimBlock, 0>>>(d_data, width, height, layer,
|
|
|
|
tex);
|
|
|
|
|
|
|
|
// check if kernel execution generated an error
|
|
|
|
getLastCudaError("Kernel execution failed");
|
|
|
|
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
sdkStopTimer(&timer);
|
|
|
|
printf("Processing time: %.3f msec\n", sdkGetTimerValue(&timer));
|
|
|
|
printf("%.2f Mtexlookups/sec\n",
|
|
|
|
(width * height * num_layers / (sdkGetTimerValue(&timer) / 1000.0f) /
|
|
|
|
1e6));
|
|
|
|
sdkDeleteTimer(&timer);
|
|
|
|
|
|
|
|
// allocate mem for the result on host side
|
|
|
|
float *h_odata = (float *)malloc(size);
|
|
|
|
// copy result from device to host
|
|
|
|
checkCudaErrors(cudaMemcpy(h_odata, d_data, size, cudaMemcpyDeviceToHost));
|
|
|
|
|
|
|
|
// write regression file if necessary
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "regression")) {
|
|
|
|
// write file for regression test
|
|
|
|
sdkWriteFile<float>("./data/regression.dat", h_odata, width * height, 0.0f,
|
|
|
|
false);
|
|
|
|
} else {
|
|
|
|
printf("Comparing kernel output to expected data\n");
|
|
|
|
|
|
|
|
#define MIN_EPSILON_ERROR 5e-3f
|
|
|
|
bResult = compareData(h_odata, h_data_ref, width * height * num_layers,
|
|
|
|
MIN_EPSILON_ERROR, 0.0f);
|
|
|
|
}
|
|
|
|
|
|
|
|
// cleanup memory
|
|
|
|
free(h_data);
|
|
|
|
free(h_data_ref);
|
|
|
|
free(h_odata);
|
|
|
|
|
|
|
|
checkCudaErrors(cudaDestroyTextureObject(tex));
|
|
|
|
checkCudaErrors(cudaFree(d_data));
|
|
|
|
checkCudaErrors(cudaFreeArray(cu_3darray));
|
|
|
|
|
|
|
|
exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
|
|
}
|