mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-24 23:39:14 +08:00
229 lines
8.0 KiB
Plaintext
229 lines
8.0 KiB
Plaintext
|
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
//
|
||
|
// This sample demonstrates the use of streams for concurrent execution. It also
|
||
|
// illustrates how to introduce dependencies between CUDA streams with the
|
||
|
// cudaStreamWaitEvent function.
|
||
|
//
|
||
|
|
||
|
// Devices of compute capability 2.0 or higher can overlap the kernels
|
||
|
//
|
||
|
#include <cooperative_groups.h>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
namespace cg = cooperative_groups;
|
||
|
#include <helper_cuda.h>
|
||
|
#include <helper_functions.h>
|
||
|
|
||
|
// This is a kernel that does no real work but runs at least for a specified
|
||
|
// number of clocks
|
||
|
__global__ void clock_block(clock_t *d_o, clock_t clock_count) {
|
||
|
unsigned int start_clock = (unsigned int)clock();
|
||
|
|
||
|
clock_t clock_offset = 0;
|
||
|
|
||
|
while (clock_offset < clock_count) {
|
||
|
unsigned int end_clock = (unsigned int)clock();
|
||
|
|
||
|
// The code below should work like
|
||
|
// this (thanks to modular arithmetics):
|
||
|
//
|
||
|
// clock_offset = (clock_t) (end_clock > start_clock ?
|
||
|
// end_clock - start_clock :
|
||
|
// end_clock + (0xffffffffu - start_clock));
|
||
|
//
|
||
|
// Indeed, let m = 2^32 then
|
||
|
// end - start = end + m - start (mod m).
|
||
|
|
||
|
clock_offset = (clock_t)(end_clock - start_clock);
|
||
|
}
|
||
|
|
||
|
d_o[0] = clock_offset;
|
||
|
}
|
||
|
|
||
|
// Single warp reduction kernel
|
||
|
__global__ void sum(clock_t *d_clocks, int N) {
|
||
|
// Handle to thread block group
|
||
|
cg::thread_block cta = cg::this_thread_block();
|
||
|
__shared__ clock_t s_clocks[32];
|
||
|
|
||
|
clock_t my_sum = 0;
|
||
|
|
||
|
for (int i = threadIdx.x; i < N; i += blockDim.x) {
|
||
|
my_sum += d_clocks[i];
|
||
|
}
|
||
|
|
||
|
s_clocks[threadIdx.x] = my_sum;
|
||
|
cg::sync(cta);
|
||
|
|
||
|
for (int i = 16; i > 0; i /= 2) {
|
||
|
if (threadIdx.x < i) {
|
||
|
s_clocks[threadIdx.x] += s_clocks[threadIdx.x + i];
|
||
|
}
|
||
|
|
||
|
cg::sync(cta);
|
||
|
}
|
||
|
|
||
|
d_clocks[0] = s_clocks[0];
|
||
|
}
|
||
|
|
||
|
int main(int argc, char **argv) {
|
||
|
int nkernels = 8; // number of concurrent kernels
|
||
|
int nstreams = nkernels + 1; // use one more stream than concurrent kernel
|
||
|
int nbytes = nkernels * sizeof(clock_t); // number of data bytes
|
||
|
float kernel_time = 10; // time the kernel should run in ms
|
||
|
float elapsed_time; // timing variables
|
||
|
int cuda_device = 0;
|
||
|
|
||
|
printf("[%s] - Starting...\n", argv[0]);
|
||
|
|
||
|
// get number of kernels if overridden on the command line
|
||
|
if (checkCmdLineFlag(argc, (const char **)argv, "nkernels")) {
|
||
|
nkernels = getCmdLineArgumentInt(argc, (const char **)argv, "nkernels");
|
||
|
nstreams = nkernels + 1;
|
||
|
}
|
||
|
|
||
|
// use command-line specified CUDA device, otherwise use device with highest
|
||
|
// Gflops/s
|
||
|
cuda_device = findCudaDevice(argc, (const char **)argv);
|
||
|
|
||
|
cudaDeviceProp deviceProp;
|
||
|
checkCudaErrors(cudaGetDevice(&cuda_device));
|
||
|
|
||
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, cuda_device));
|
||
|
|
||
|
if ((deviceProp.concurrentKernels == 0)) {
|
||
|
printf("> GPU does not support concurrent kernel execution\n");
|
||
|
printf(" CUDA kernel runs will be serialized\n");
|
||
|
}
|
||
|
|
||
|
printf("> Detected Compute SM %d.%d hardware with %d multi-processors\n",
|
||
|
deviceProp.major, deviceProp.minor, deviceProp.multiProcessorCount);
|
||
|
|
||
|
// allocate host memory
|
||
|
clock_t *a = 0; // pointer to the array data in host memory
|
||
|
checkCudaErrors(cudaMallocHost((void **)&a, nbytes));
|
||
|
|
||
|
// allocate device memory
|
||
|
clock_t *d_a = 0; // pointers to data and init value in the device memory
|
||
|
checkCudaErrors(cudaMalloc((void **)&d_a, nbytes));
|
||
|
|
||
|
// allocate and initialize an array of stream handles
|
||
|
cudaStream_t *streams =
|
||
|
(cudaStream_t *)malloc(nstreams * sizeof(cudaStream_t));
|
||
|
|
||
|
for (int i = 0; i < nstreams; i++) {
|
||
|
checkCudaErrors(cudaStreamCreate(&(streams[i])));
|
||
|
}
|
||
|
|
||
|
// create CUDA event handles
|
||
|
cudaEvent_t start_event, stop_event;
|
||
|
checkCudaErrors(cudaEventCreate(&start_event));
|
||
|
checkCudaErrors(cudaEventCreate(&stop_event));
|
||
|
|
||
|
// the events are used for synchronization only and hence do not need to
|
||
|
// record timings this also makes events not introduce global sync points when
|
||
|
// recorded which is critical to get overlap
|
||
|
cudaEvent_t *kernelEvent;
|
||
|
kernelEvent = (cudaEvent_t *)malloc(nkernels * sizeof(cudaEvent_t));
|
||
|
|
||
|
for (int i = 0; i < nkernels; i++) {
|
||
|
checkCudaErrors(
|
||
|
cudaEventCreateWithFlags(&(kernelEvent[i]), cudaEventDisableTiming));
|
||
|
}
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////
|
||
|
// time execution with nkernels streams
|
||
|
clock_t total_clocks = 0;
|
||
|
#if defined(__arm__) || defined(__aarch64__)
|
||
|
// the kernel takes more time than the channel reset time on arm archs, so to
|
||
|
// prevent hangs reduce time_clocks.
|
||
|
clock_t time_clocks = (clock_t)(kernel_time * (deviceProp.clockRate / 1000));
|
||
|
#else
|
||
|
clock_t time_clocks = (clock_t)(kernel_time * deviceProp.clockRate);
|
||
|
#endif
|
||
|
|
||
|
cudaEventRecord(start_event, 0);
|
||
|
|
||
|
// queue nkernels in separate streams and record when they are done
|
||
|
for (int i = 0; i < nkernels; ++i) {
|
||
|
clock_block<<<1, 1, 0, streams[i]>>>(&d_a[i], time_clocks);
|
||
|
total_clocks += time_clocks;
|
||
|
checkCudaErrors(cudaEventRecord(kernelEvent[i], streams[i]));
|
||
|
|
||
|
// make the last stream wait for the kernel event to be recorded
|
||
|
checkCudaErrors(
|
||
|
cudaStreamWaitEvent(streams[nstreams - 1], kernelEvent[i], 0));
|
||
|
}
|
||
|
|
||
|
// queue a sum kernel and a copy back to host in the last stream.
|
||
|
// the commands in this stream get dispatched as soon as all the kernel events
|
||
|
// have been recorded
|
||
|
sum<<<1, 32, 0, streams[nstreams - 1]>>>(d_a, nkernels);
|
||
|
checkCudaErrors(cudaMemcpyAsync(
|
||
|
a, d_a, sizeof(clock_t), cudaMemcpyDeviceToHost, streams[nstreams - 1]));
|
||
|
|
||
|
// at this point the CPU has dispatched all work for the GPU and can continue
|
||
|
// processing other tasks in parallel
|
||
|
|
||
|
// in this sample we just wait until the GPU is done
|
||
|
checkCudaErrors(cudaEventRecord(stop_event, 0));
|
||
|
checkCudaErrors(cudaEventSynchronize(stop_event));
|
||
|
checkCudaErrors(cudaEventElapsedTime(&elapsed_time, start_event, stop_event));
|
||
|
|
||
|
printf("Expected time for serial execution of %d kernels = %.3fs\n", nkernels,
|
||
|
nkernels * kernel_time / 1000.0f);
|
||
|
printf("Expected time for concurrent execution of %d kernels = %.3fs\n",
|
||
|
nkernels, kernel_time / 1000.0f);
|
||
|
printf("Measured time for sample = %.3fs\n", elapsed_time / 1000.0f);
|
||
|
|
||
|
bool bTestResult = (a[0] > total_clocks);
|
||
|
|
||
|
// release resources
|
||
|
for (int i = 0; i < nkernels; i++) {
|
||
|
cudaStreamDestroy(streams[i]);
|
||
|
cudaEventDestroy(kernelEvent[i]);
|
||
|
}
|
||
|
|
||
|
free(streams);
|
||
|
free(kernelEvent);
|
||
|
|
||
|
cudaEventDestroy(start_event);
|
||
|
cudaEventDestroy(stop_event);
|
||
|
cudaFreeHost(a);
|
||
|
cudaFree(d_a);
|
||
|
|
||
|
if (!bTestResult) {
|
||
|
printf("Test failed!\n");
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
printf("Test passed\n");
|
||
|
exit(EXIT_SUCCESS);
|
||
|
}
|