cuda-samples/Samples/cudaTensorCoreGemm/cudaTensorCoreGemm.cu

496 lines
19 KiB
Plaintext
Raw Normal View History

/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// CUDA sample demonstrating a GEMM computation using the Warp Matrix Multiply
// and Accumulate API introduced in CUDA 9.
// In this program, the compute_gemm kernel computes the result of a matrix
// multiplication and addition: D = alpha * A * B + beta * C. The dimensions of
// both C and D matrices are M_GLOBAL x N_GLOBAL. The A matrix is M_GLOBAL x
// K_GLOBAL (row-major), the B matrix is K_GLOBAL x N_GLOBAL (column-major). In
// that kernel, each CTA computes one 128 x 128 tile of the resulting matrix per
// iteration. When the tile is computed, the CTA stores it to the global memory
// and begins a new iteration, selecting a new 128 x 128 tile to compute.
// Each CTA consists of eight warps. For the 128 x 128 tile, each warp computes
// eight 16 x 16 subtiles, organized in a 2 x 4 two-dimensional array. Warps
// compute the 16 x 16 subtiles using nvcuda::wmma::mma_sync operations by
// moving through the K_GLOBAL dimension of the A and B matrices and
// accumulating the intermediate result in the local thread state.
// There are a number of simple optimizations used in the algorithm:
// - The CTA copies the 128 x 128 tile of the C matrix from the global memory to
// shared memory. After that is done, each warp loads the C matrix fragments
// from shared memory, thus avoiding a random global memory access.
// - On each internal iteration, the CTA copies a portion of the A and B
// matrices from
// global memory to shared memory. After that, all warps in the CTA reuse the
// A and B data from shared memory, thus reducing the number of data copies
// from global memory.
// - The portions of the A and B matrices are stored in shared memory with an
// additional
// padding (skew) to reduce the number of shared memory access bank conflicts.
// (See a detailed explanation near the SKEW_HALF macro definition.)
// - When the CTA finishes computing the tiles of the resulting matrix, each
// warp stores
// its subtiles to shared memory. The CTA then copies the shared memory
// contents to global memory, again avoiding redundant random global memory
// accesses.
// - Note that the CTA tile size is chosen to maximize the GPU register
// utilization,
// but carefully enough to avoid local memory use.
#include <assert.h>
#include <cuda.h>
#include <mma.h>
#include <stdio.h>
// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>
// GPU configuration.
#define WARP_SIZE 32
// MMA matrix tile dimensions.
#define M 16
#define N 16
#define K 16
// GEMM configuration.
#define M_TILES 256
#define N_TILES 256
#define K_TILES 256
#define M_GLOBAL (M * M_TILES)
#define N_GLOBAL (N * N_TILES)
#define K_GLOBAL (K * K_TILES)
#define C_LAYOUT wmma::mem_row_major
// Implementation constants.
#define WARPS_PER_BLOCK 8
#define THREADS_PER_BLOCK (WARP_SIZE * WARPS_PER_BLOCK)
#define CHUNK_K 8
#define BLOCK_ROW_WARPS 2
#define BLOCK_COL_WARPS 4
#define WARP_ROW_TILES 4
#define WARP_COL_TILES 2
#define BLOCK_ROW_TILES (WARP_ROW_TILES * BLOCK_ROW_WARPS)
#define BLOCK_COL_TILES (WARP_COL_TILES * BLOCK_COL_WARPS)
#define GLOBAL_MEM_STRIDE N_GLOBAL
#define SHMEM_STRIDE (N * BLOCK_ROW_TILES)
#define SHMEM_OFFSET (N * WARP_ROW_TILES)
// The macro below is used to shift rows of the A matrix and columns of the B
// matrix in shared memory to minimize possible bank conflicts. Before
// performing the nvcuda::wmma::mma_sync operation, the warp must load the
// matrix data using the nvcuda::wmma::load_matrix_sync operation. Although the
// memory access pattern is not specified for that function, each lane in the
// warp can read one or multiple matrix elements from different matrix rows or
// columns. For shared memory, such access can result in bank conflicts if
// different rows / columns of the matrix map to the same bank. By shifting each
// row and column by a few bytes, we make sure that they map to different banks,
// thus reducing the number of possible bank conflicts. The number of 8 two-byte
// "half" elements is chosen as the minimum possible shift because we must keep
// each row and column 128-bit aligned, as required by
// nvcuda::wmma::load_matrix_sync.
#define SKEW_HALF 8
#define checkKernelErrors(expr) \
do { \
expr; \
\
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
printf("Line %d: '%s' failed: %s\n", __LINE__, #expr, \
cudaGetErrorString(__err)); \
abort(); \
} \
} while (0)
using namespace nvcuda;
__host__ void init_host_matrices(float *a, float *b, float *c) {
for (int i = 0; i < M_GLOBAL; i++) {
for (int j = 0; j < K_GLOBAL; j++) {
a[i * K_GLOBAL + j] = static_cast<float>(rand() % 3);
}
}
for (int i = 0; i < N_GLOBAL; i++) {
for (int j = 0; j < K_GLOBAL; j++) {
b[i * K_GLOBAL + j] = static_cast<float>(rand() % 3);
}
}
for (int t = 0; t < M_GLOBAL * N_GLOBAL; t++) {
c[t] = static_cast<float>(rand() % 3);
}
}
__global__ void init_device_matrices(const float *A_h, const float *B_h,
const float *C_h, half *A, half *B,
float *C, float *D) {
for (int i = blockDim.x * blockIdx.x + threadIdx.x; i < M_GLOBAL * K_GLOBAL;
i += gridDim.x * blockDim.x)
A[i] = __float2half(A_h[i]);
for (int i = blockDim.x * blockIdx.x + threadIdx.x; i < N_GLOBAL * K_GLOBAL;
i += gridDim.x * blockDim.x)
B[i] = __float2half(B_h[i]);
for (int i = blockDim.x * blockIdx.x + threadIdx.x; i < M_GLOBAL * N_GLOBAL;
i += gridDim.x * blockDim.x)
C[i] = C_h[i];
for (int i = blockDim.x * blockIdx.x + threadIdx.x; i < M_GLOBAL * N_GLOBAL;
i += gridDim.x * blockDim.x)
D[i] = 0;
}
__global__ void compute_gemm(const half *A, const half *B, const float *C,
float *D, float alpha, float beta) {
extern __shared__ half shmem[][CHUNK_K * K + SKEW_HALF];
// Warp and lane identification.
const unsigned int warpId = threadIdx.x / WARP_SIZE;
const unsigned int laneId = threadIdx.x % WARP_SIZE;
// Offset in shared memory from which the B matrix is stored.
const size_t shmem_idx_b_off = BLOCK_COL_TILES * M;
// This pointer is used to access the C and D matrix tiles this warp computes.
float *shmem_warp_tile_ptr = reinterpret_cast<float *>(
&shmem[0][0] + (warpId / 2) * SHMEM_STRIDE * K * 2 +
(warpId % 2) * SHMEM_OFFSET);
// This pointer is used to stream the C and D matrices block-wide tile to and
// from shared memory.
float *shmem_warp_stream_ptr =
reinterpret_cast<float *>(&shmem[0][0] + warpId * SHMEM_STRIDE * K);
// Adjust the beta scaler, as it'll be multiplied by alpha at the end of
// each tile computation. Technically this is not generally correct (may
// result in a loss of precision). Zero still needs to be specially handled
// though.
beta /= alpha;
// Each CTA slides along the 128 x 128 tiles from the top left corner of the
// matrix to the right and down, and selects the next tile to compute. Once
// there's no such tile, all warps in this CTA exit.
for (unsigned int block_pos = blockIdx.x;; block_pos += gridDim.x) {
const unsigned int block_tile_i =
((block_pos * BLOCK_ROW_TILES) / N_TILES) * (BLOCK_COL_TILES);
const unsigned int block_tile_j = (block_pos * BLOCK_COL_TILES) % N_TILES;
// Stop when there are no more D matrix tiles to compute in this CTA.
if (block_tile_i >= M_TILES) {
break;
}
// This warp's pointer to the C matrix data to copy memory from to shared
// memory.
const size_t gmem_idx =
(block_tile_i + warpId) * M * GLOBAL_MEM_STRIDE + block_tile_j * N;
const float *src_gmem_warp_stream_ptr = &C[gmem_idx];
// Stream multiple C tiles to shared memory.
#pragma unroll
for (int i = 0; i < K; i++) {
typedef int4 copy_t;
*((copy_t *)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId) =
*((copy_t *)(src_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) +
laneId);
}
__syncthreads();
// These fragments will accumulate the result of A and B matrix fragment
// multiplications along the K_GLOBAL dimension.
wmma::fragment<wmma::accumulator, M, N, K, float> c[WARP_COL_TILES]
[WARP_ROW_TILES];
// Load the C matrix tiles into fragments from shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
const float *tile_ptr =
shmem_warp_tile_ptr + i * SHMEM_STRIDE * K + j * N;
wmma::load_matrix_sync(c[i][j], tile_ptr, SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Scale the C matrix.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
for (int t = 0; t < c[i][j].num_elements; t++) {
c[i][j].x[t] *= beta;
}
}
}
// Select what warp copies what matrix to shared memory.
// Warps 0-3 copy the A matrix, warps 4-7 copy the B matrix.
const half *warp_ptr = (warpId < 4) ? (&A[block_tile_i * M * K_GLOBAL] +
M * K_GLOBAL * (warpId % 4) * 2)
: (&B[block_tile_j * N * K_GLOBAL] +
N * K_GLOBAL * (warpId % 4) * 2);
// Go through the global K dimension by a fixed step at a time.
#pragma unroll
for (int tile_k = 0; tile_k < K_TILES; tile_k += CHUNK_K) {
// Copy slices of the A and B matrices to shared memory.
// The first half of the warps in the CTA copy the A matrix, the rest copy
// the B matrix.
size_t shmem_idx =
warpId < (WARPS_PER_BLOCK / 2)
? (M * (warpId % (WARPS_PER_BLOCK / 2)) * 2)
: (N * (warpId % (WARPS_PER_BLOCK / 2)) * 2 + shmem_idx_b_off);
// First half of the warp copies the first row / column of the matrix,
// the second half of the warp copies the next.
int4 *lane_ptr = (int4 *)(warp_ptr + tile_k * K +
(laneId / (WARP_SIZE / 2)) * K_GLOBAL) +
(laneId % (WARP_SIZE / 2));
// Shift the second half of the warp to the next row / column in the
// shared memory.
shmem_idx += laneId / (WARP_SIZE / 2);
#pragma unroll
for (int i = 0; i < (WARP_SIZE / 2); i++) {
// Copy 16 bytes at once in each lane.
*((int4 *)&shmem[shmem_idx][0] + (laneId % (WARP_SIZE / 2))) =
*lane_ptr;
// Advance the global memory pointer and the shared memory index.
lane_ptr = reinterpret_cast<int4 *>(
reinterpret_cast<half *>(lane_ptr + K_GLOBAL * 2));
shmem_idx += 2;
}
__syncthreads();
// Compute a grid of C matrix tiles in each warp.
#pragma unroll
for (int k_step = 0; k_step < CHUNK_K; k_step++) {
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major>
a[WARP_COL_TILES];
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::col_major>
b[WARP_ROW_TILES];
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
size_t shmem_idx_a = (warpId / 2) * M * 2 + (i * M);
const half *tile_ptr = &shmem[shmem_idx_a][k_step * K];
wmma::load_matrix_sync(a[i], tile_ptr, K * CHUNK_K + SKEW_HALF);
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
if (i == 0) {
// Load the B matrix fragment once, because it is going to be
// reused against the other A matrix fragments.
size_t shmem_idx_b = shmem_idx_b_off +
(WARP_ROW_TILES * N) * (warpId % 2) +
(j * N);
const half *tile_ptr = &shmem[shmem_idx_b][k_step * K];
wmma::load_matrix_sync(b[j], tile_ptr, K * CHUNK_K + SKEW_HALF);
}
wmma::mma_sync(c[i][j], a[i], b[j], c[i][j]);
}
}
}
__syncthreads();
}
// Store the D fragments to shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
// Uniform, point-wise transformations of ALL fragment elements by ALL
// threads in the warp are well-defined even though element indices
// within fragment storage are not defined.
for (int t = 0; t < c[i][j].num_elements; t++) c[i][j].x[t] *= alpha;
float *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * K + j * N;
wmma::store_matrix_sync(tile_ptr, c[i][j], SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Now that shared memory contains all the D tiles, stream them to global
// memory.
float *dst_gmem_warp_stream_ptr = &D[gmem_idx];
#pragma unroll
for (int i = 0; i < K; i++) {
*(reinterpret_cast<int4 *>(dst_gmem_warp_stream_ptr +
GLOBAL_MEM_STRIDE * i) +
laneId) =
*(reinterpret_cast<int4 *>(shmem_warp_stream_ptr + SHMEM_STRIDE * i) +
laneId);
}
__syncthreads();
}
}
int main(int argc, char **argv) {
printf("Initializing...\n");
int dev = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
// Tensor cores require a GPU of Volta (SM7X) architecture or higher.
if (deviceProp.major < 7) {
printf(
"cudaTensorCoreGemm requires requires SM 7.0 or higher to use Tensor "
"Cores. Exiting...\n");
exit(EXIT_WAIVED);
}
printf("M: %d (%d x %d)\n", M_GLOBAL, M, M_TILES);
printf("N: %d (%d x %d)\n", N_GLOBAL, N, N_TILES);
printf("K: %d (%d x %d)\n", K_GLOBAL, K, K_TILES);
float *A_h = NULL;
float *B_h = NULL;
float *C_h = NULL;
checkCudaErrors(cudaMallocManaged(reinterpret_cast<void **>(&A_h),
sizeof(float) * M_GLOBAL * K_GLOBAL));
checkCudaErrors(cudaMallocManaged(reinterpret_cast<void **>(&B_h),
sizeof(float) * K_GLOBAL * N_GLOBAL));
checkCudaErrors(cudaMallocManaged(reinterpret_cast<void **>(&C_h),
sizeof(float) * M_GLOBAL * N_GLOBAL));
half *A = NULL;
half *B = NULL;
float *C = NULL;
float *D = NULL;
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&A),
sizeof(half) * M_GLOBAL * K_GLOBAL));
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&B),
sizeof(half) * N_GLOBAL * K_GLOBAL));
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&C),
sizeof(float) * M_GLOBAL * N_GLOBAL));
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&D),
sizeof(float) * M_GLOBAL * N_GLOBAL));
assert(((unsigned long long)A) % 128 == 0);
assert(((unsigned long long)B) % 128 == 0);
assert(((unsigned long long)C) % 128 == 0);
assert(((unsigned long long)D) % 128 == 0);
init_host_matrices(A_h, B_h, C_h);
printf("Preparing data for GPU...\n");
checkKernelErrors(
(init_device_matrices<<<deviceProp.multiProcessorCount,
THREADS_PER_BLOCK>>>(A_h, B_h, C_h, A, B, C, D)));
checkCudaErrors(cudaDeviceSynchronize());
enum {
SHMEM_SZ =
sizeof(half) * (BLOCK_COL_TILES * M) * (CHUNK_K * K + SKEW_HALF) * 2
};
printf("Required shared memory size: %lu Kb\n", SHMEM_SZ / 1024UL);
checkCudaErrors(cudaFuncSetAttribute(
compute_gemm, cudaFuncAttributeMaxDynamicSharedMemorySize, SHMEM_SZ));
printf("Computing...\n");
cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
checkCudaErrors(cudaEventRecord(start));
const float alpha = 1.1f;
const float beta = 1.2f;
checkKernelErrors(
(compute_gemm<<<deviceProp.multiProcessorCount, THREADS_PER_BLOCK,
SHMEM_SZ>>>(A, B, C, D, alpha, beta)));
checkCudaErrors(cudaEventRecord(stop));
checkCudaErrors(cudaEventSynchronize(stop));
float milliseconds = 0;
checkCudaErrors(cudaEventElapsedTime(&milliseconds, start, stop));
printf("Time: %f ms\n", milliseconds);
printf("TFLOPS: %.2f\n", static_cast<double>((static_cast<double>(M_GLOBAL) *
N_GLOBAL * K_GLOBAL * 2) /
(milliseconds / 1000.)) /
1e12);
checkCudaErrors(cudaFree(reinterpret_cast<void *>(A_h)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(B_h)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(C_h)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(A)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(B)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(C)));
checkCudaErrors(cudaFree(reinterpret_cast<void *>(D)));
return 0;
}