cuda-samples/Samples/2_Concepts_and_Techniques/MC_SingleAsianOptionP/src/pricingengine.cu

375 lines
12 KiB
Plaintext
Raw Normal View History

2022-01-13 14:05:24 +08:00
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2021-10-21 19:04:49 +08:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "../inc/pricingengine.h"
#include <string>
#include <vector>
#include <numeric>
#include <stdexcept>
#include <typeinfo>
#include <cuda_runtime.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <curand_kernel.h>
#include "../inc/asianoption.h"
#include "../inc/cudasharedmem.h"
using std::string;
using std::vector;
// RNG init kernel
__global__ void initRNG(curandState *const rngStates, const unsigned int seed) {
// Determine thread ID
unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;
// Initialise the RNG
curand_init(seed, tid, 0, &rngStates[tid]);
}
__device__ inline float getPathStep(float &drift, float &diffusion,
curandState &state) {
return expf(drift + diffusion * curand_normal(&state));
}
__device__ inline double getPathStep(double &drift, double &diffusion,
curandState &state) {
return exp(drift + diffusion * curand_normal_double(&state));
}
// Path generation kernel
template <typename Real>
__global__ void generatePaths(Real *const paths, curandState *const rngStates,
const AsianOption<Real> *const option,
const unsigned int numSims,
const unsigned int numTimesteps) {
// Determine thread ID
unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int step = gridDim.x * blockDim.x;
// Compute parameters
Real drift =
(option->r - static_cast<Real>(0.5) * option->sigma * option->sigma) *
option->dt;
Real diffusion = option->sigma * sqrt(option->dt);
// Initialise the RNG
curandState localState = rngStates[tid];
for (unsigned int i = tid; i < numSims; i += step) {
// Shift the output pointer
Real *output = paths + i;
// Simulate the path
Real s = static_cast<Real>(1);
for (unsigned int t = 0; t < numTimesteps; t++, output += numSims) {
s *= getPathStep(drift, diffusion, localState);
*output = s;
}
}
}
template <typename Real>
__device__ Real reduce_sum(Real in, cg::thread_block cta) {
SharedMemory<Real> sdata;
// Perform first level of reduction:
// - Write to shared memory
unsigned int ltid = threadIdx.x;
sdata[ltid] = in;
cg::sync(cta);
// Do reduction in shared mem
for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
if (ltid < s) {
sdata[ltid] += sdata[ltid + s];
}
cg::sync(cta);
}
return sdata[0];
}
// Valuation kernel
template <typename Real>
__global__ void computeValue(Real *const values, const Real *const paths,
const AsianOption<Real> *const option,
const unsigned int numSims,
const unsigned int numTimesteps) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
// Determine thread ID
unsigned int bid = blockIdx.x;
unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int step = gridDim.x * blockDim.x;
Real sumPayoffs = static_cast<Real>(0);
for (unsigned int i = tid; i < numSims; i += step) {
// Shift the input pointer
const Real *path = paths + i;
// Compute the arithmetic average
Real avg = static_cast<Real>(0);
for (unsigned int t = 0; t < numTimesteps; t++, path += numSims) {
avg += *path;
}
avg = avg * option->spot / numTimesteps;
// Compute the payoff
Real payoff = avg - option->strike;
if (option->type == AsianOption<Real>::Put) {
payoff = -payoff;
}
payoff = max(static_cast<Real>(0), payoff);
// Accumulate payoff locally
sumPayoffs += payoff;
}
// Reduce within the block
sumPayoffs = reduce_sum<Real>(sumPayoffs, cta);
// Store the result
if (threadIdx.x == 0) {
values[bid] = sumPayoffs;
}
}
template <typename Real>
PricingEngine<Real>::PricingEngine(unsigned int numSims, unsigned int device,
unsigned int threadBlockSize,
unsigned int seed)
: m_numSims(numSims),
m_device(device),
m_threadBlockSize(threadBlockSize),
m_seed(seed) {}
template <typename Real>
void PricingEngine<Real>::operator()(AsianOption<Real> &option) {
cudaError_t cudaResult = cudaSuccess;
struct cudaDeviceProp deviceProperties;
struct cudaFuncAttributes funcAttributes;
// Get device properties
cudaResult = cudaGetDeviceProperties(&deviceProperties, m_device);
if (cudaResult != cudaSuccess) {
string msg("Could not get device properties: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
// Check precision is valid
unsigned int deviceVersion =
deviceProperties.major * 10 + deviceProperties.minor;
if (typeid(Real) == typeid(double) && deviceVersion < 13) {
throw std::runtime_error("Device does not have double precision support");
}
// Attach to GPU
cudaResult = cudaSetDevice(m_device);
if (cudaResult != cudaSuccess) {
string msg("Could not set CUDA device: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
// Determine how to divide the work between cores
dim3 block;
dim3 grid;
block.x = m_threadBlockSize;
grid.x = (m_numSims + m_threadBlockSize - 1) / m_threadBlockSize;
// Aim to launch around ten or more times as many blocks as there
// are multiprocessors on the target device.
unsigned int blocksPerSM = 10;
unsigned int numSMs = deviceProperties.multiProcessorCount;
while (grid.x > 2 * blocksPerSM * numSMs) {
grid.x >>= 1;
}
// Get initRNG function properties and check the maximum block size
cudaResult = cudaFuncGetAttributes(&funcAttributes, initRNG);
if (cudaResult != cudaSuccess) {
string msg("Could not get function attributes: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
if (block.x > (unsigned int)funcAttributes.maxThreadsPerBlock) {
throw std::runtime_error(
"Block X dimension is too large for initRNG kernel");
}
// Get generatePaths function properties and check the maximum block size
cudaResult = cudaFuncGetAttributes(&funcAttributes, generatePaths<Real>);
if (cudaResult != cudaSuccess) {
string msg("Could not get function attributes: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
if (block.x > (unsigned int)funcAttributes.maxThreadsPerBlock) {
throw std::runtime_error(
"Block X dimension is too large for generatePaths kernel");
}
// Get computeValue function properties and check the maximum block size
cudaResult = cudaFuncGetAttributes(&funcAttributes, computeValue<Real>);
if (cudaResult != cudaSuccess) {
string msg("Could not get function attributes: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
if (block.x > (unsigned int)funcAttributes.maxThreadsPerBlock) {
throw std::runtime_error(
"Block X dimension is too large for computeValue kernel");
}
// Setup problem on GPU
AsianOption<Real> *d_option = 0;
cudaResult = cudaMalloc((void **)&d_option, sizeof(AsianOption<Real>));
if (cudaResult != cudaSuccess) {
string msg("Could not allocate memory on device for option data: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
cudaResult = cudaMemcpy(d_option, &option, sizeof(AsianOption<Real>),
cudaMemcpyHostToDevice);
if (cudaResult != cudaSuccess) {
string msg("Could not copy data to device: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
// Allocate memory for paths
Real *d_paths = 0;
int numTimesteps = static_cast<int>(option.tenor / option.dt);
cudaResult =
cudaMalloc((void **)&d_paths, m_numSims * numTimesteps * sizeof(Real));
if (cudaResult != cudaSuccess) {
string msg("Could not allocate memory on device for paths: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
// Allocate memory for RNG states
curandState *d_rngStates = 0;
cudaResult =
cudaMalloc((void **)&d_rngStates, grid.x * block.x * sizeof(curandState));
if (cudaResult != cudaSuccess) {
string msg("Could not allocate memory on device for RNG state: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
// Allocate memory for result
Real *d_values = 0;
cudaResult = cudaMalloc((void **)&d_values, grid.x * sizeof(Real));
if (cudaResult != cudaSuccess) {
string msg("Could not allocate memory on device for partial results: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
// Initialise RNG
initRNG<<<grid, block>>>(d_rngStates, m_seed);
// Generate paths
generatePaths<Real><<<grid, block>>>(d_paths, d_rngStates, d_option,
m_numSims, numTimesteps);
// Compute value
computeValue<<<grid, block, block.x * sizeof(Real)>>>(
d_values, d_paths, d_option, m_numSims, numTimesteps);
// Copy partial results back
vector<Real> values(grid.x);
cudaResult = cudaMemcpy(&values[0], d_values, grid.x * sizeof(Real),
cudaMemcpyDeviceToHost);
if (cudaResult != cudaSuccess) {
string msg("Could not copy partial results to host: ");
msg += cudaGetErrorString(cudaResult);
throw std::runtime_error(msg);
}
// Complete sum-reduction on host
option.value =
std::accumulate(values.begin(), values.end(), static_cast<Real>(0));
// Compute the mean
option.value /= m_numSims;
// Discount to present value
option.value *= exp(-option.r * option.tenor);
// Cleanup
if (d_option) {
cudaFree(d_option);
d_option = 0;
}
if (d_paths) {
cudaFree(d_paths);
d_paths = 0;
}
if (d_rngStates) {
cudaFree(d_rngStates);
d_rngStates = 0;
}
if (d_values) {
cudaFree(d_values);
d_values = 0;
}
}
// Explicit template instantiation
template class PricingEngine<float>;
template class PricingEngine<double>;