cuda-samples/Samples/2_Concepts_and_Techniques/particles/shaders.cpp

69 lines
2.7 KiB
C++
Raw Normal View History

2022-01-13 14:05:24 +08:00
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2021-10-21 19:04:49 +08:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define STRINGIFY(A) #A
// vertex shader
const char *vertexShader = STRINGIFY(
uniform float pointRadius; // point size in world space
uniform float pointScale; // scale to calculate size in pixels
uniform float densityScale;
uniform float densityOffset;
void main()
{
// calculate window-space point size
vec3 posEye = vec3(gl_ModelViewMatrix * vec4(gl_Vertex.xyz, 1.0));
float dist = length(posEye);
gl_PointSize = pointRadius * (pointScale / dist);
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = gl_ModelViewProjectionMatrix * vec4(gl_Vertex.xyz, 1.0);
gl_FrontColor = gl_Color;
});
// pixel shader for rendering points as shaded spheres
const char *spherePixelShader = STRINGIFY(
void main()
{
const vec3 lightDir = vec3(0.577, 0.577, 0.577);
// calculate normal from texture coordinates
vec3 N;
N.xy = gl_TexCoord[0].xy*vec2(2.0, -2.0) + vec2(-1.0, 1.0);
float mag = dot(N.xy, N.xy);
if (mag > 1.0) discard; // kill pixels outside circle
N.z = sqrt(1.0-mag);
// calculate lighting
float diffuse = max(0.0, dot(lightDir, N));
gl_FragColor = gl_Color * diffuse;
});