cuda-samples/Samples/2_Concepts_and_Techniques/EGLStream_CUDA_CrossGPU/kernel.cu

141 lines
5.5 KiB
Plaintext
Raw Normal View History

2022-01-13 14:05:24 +08:00
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2021-10-21 19:04:49 +08:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//
// DESCRIPTION: Simple CUDA consumer rendering sample app
//
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <stdio.h>
#include <string.h>
#include "eglstrm_common.h"
extern bool isCrossDevice;
__device__ static unsigned int numErrors = 0, errorFound = 0;
__device__ void checkProducerDataGPU(char *data, int size, char expectedVal,
int frameNumber) {
if ((data[blockDim.x * blockIdx.x + threadIdx.x] != expectedVal) &&
(!errorFound)) {
printf("Producer FOUND:%d expected: %d at %d for trial %d %d\n",
data[blockDim.x * blockIdx.x + threadIdx.x], expectedVal,
(blockDim.x * blockIdx.x + threadIdx.x), frameNumber, numErrors);
numErrors++;
errorFound = 1;
return;
}
}
__device__ void checkConsumerDataGPU(char *data, int size, char expectedVal,
int frameNumber) {
if ((data[blockDim.x * blockIdx.x + threadIdx.x] != expectedVal) &&
(!errorFound)) {
printf("Consumer FOUND:%d expected: %d at %d for trial %d %d\n",
data[blockDim.x * blockIdx.x + threadIdx.x], expectedVal,
(blockDim.x * blockIdx.x + threadIdx.x), frameNumber, numErrors);
numErrors++;
errorFound = 1;
return;
}
}
__global__ void writeDataToBuffer(char *pSrc, char newVal) {
pSrc[blockDim.x * blockIdx.x + threadIdx.x] = newVal;
}
__global__ void testKernelConsumer(char *pSrc, char size, char expectedVal,
char newVal, int frameNumber) {
checkConsumerDataGPU(pSrc, size, expectedVal, frameNumber);
}
__global__ void testKernelProducer(char *pSrc, char size, char expectedVal,
char newVal, int frameNumber) {
checkProducerDataGPU(pSrc, size, expectedVal, frameNumber);
}
__global__ void getNumErrors(int *numErr) { *numErr = numErrors; }
cudaError_t cudaProducer_filter(cudaStream_t pStream, char *pSrc, int width,
int height, char expectedVal, char newVal,
int frameNumber) {
// in case where consumer is on dgpu and producer is on igpu when return is
// called the frame is not copied back to igpu. So the consumer changes is not
// visible to producer
if (isCrossDevice == 0) {
testKernelProducer<<<(width * height) / 1024, 1024, 1, pStream>>>(
pSrc, width * height, expectedVal, newVal, frameNumber);
}
writeDataToBuffer<<<(width * height) / 1024, 1024, 1, pStream>>>(pSrc,
newVal);
return cudaSuccess;
};
cudaError_t cudaConsumer_filter(cudaStream_t cStream, char *pSrc, int width,
int height, char expectedVal, char newVal,
int frameNumber) {
testKernelConsumer<<<(width * height) / 1024, 1024, 1, cStream>>>(
pSrc, width * height, expectedVal, newVal, frameNumber);
writeDataToBuffer<<<(width * height) / 1024, 1024, 1, cStream>>>(pSrc,
newVal);
return cudaSuccess;
};
cudaError_t cudaGetValueMismatch() {
int numErr_h;
int *numErr_d = NULL;
cudaError_t err = cudaSuccess;
err = cudaMalloc(&numErr_d, sizeof(int));
if (err != cudaSuccess) {
printf("Cuda Main: cudaMalloc failed with %s\n", cudaGetErrorString(err));
return err;
}
getNumErrors<<<1, 1>>>(numErr_d);
err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
printf("Cuda Main: cudaDeviceSynchronize failed with %s\n",
cudaGetErrorString(err));
}
err = cudaMemcpy(&numErr_h, numErr_d, sizeof(int), cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
printf("Cuda Main: cudaMemcpy failed with %s\n", cudaGetErrorString(err));
cudaFree(numErr_d);
return err;
}
err = cudaFree(numErr_d);
if (err != cudaSuccess) {
printf("Cuda Main: cudaFree failed with %s\n", cudaGetErrorString(err));
return err;
}
if (numErr_h > 0) {
return cudaErrorUnknown;
}
return cudaSuccess;
}