cuda-samples/Samples/eigenvalues/bisect_util.cu

530 lines
22 KiB
Plaintext
Raw Normal View History

2021-10-21 19:04:49 +08:00
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Utility / shared functionality for bisection kernels */
#ifndef _BISECT_UTIL_H_
#define _BISECT_UTIL_H_
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
// includes, project
#include "config.h"
#include "util.h"
////////////////////////////////////////////////////////////////////////////////
//! Compute the next lower power of two of n
//! @param n number for which next higher power of two is sought
////////////////////////////////////////////////////////////////////////////////
__device__ inline int floorPow2(int n) {
// early out if already power of two
if (0 == (n & (n - 1))) {
return n;
}
int exp;
frexp((float)n, &exp);
return (1 << (exp - 1));
}
////////////////////////////////////////////////////////////////////////////////
//! Compute the next higher power of two of n
//! @param n number for which next higher power of two is sought
////////////////////////////////////////////////////////////////////////////////
__device__ inline int ceilPow2(int n) {
// early out if already power of two
if (0 == (n & (n - 1))) {
return n;
}
int exp;
frexp((float)n, &exp);
return (1 << exp);
}
////////////////////////////////////////////////////////////////////////////////
//! Compute midpoint of interval [\a left, \a right] avoiding overflow if
//! possible
//! @param left left / lower limit of interval
//! @param right right / upper limit of interval
////////////////////////////////////////////////////////////////////////////////
__device__ inline float computeMidpoint(const float left, const float right) {
float mid;
if (sign_f(left) == sign_f(right)) {
mid = left + (right - left) * 0.5f;
} else {
mid = (left + right) * 0.5f;
}
return mid;
}
////////////////////////////////////////////////////////////////////////////////
//! Check if interval converged and store appropriately
//! @param addr address where to store the information of the interval
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param left lower limit of interval
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param right_count eigenvalues less than \a right
//! @param precision desired precision for eigenvalues
////////////////////////////////////////////////////////////////////////////////
template <class S, class T>
__device__ void storeInterval(unsigned int addr, float *s_left, float *s_right,
T *s_left_count, T *s_right_count, float left,
float right, S left_count, S right_count,
float precision) {
s_left_count[addr] = left_count;
s_right_count[addr] = right_count;
// check if interval converged
float t0 = abs(right - left);
float t1 = max(abs(left), abs(right)) * precision;
if (t0 <= max(MIN_ABS_INTERVAL, t1)) {
// compute mid point
float lambda = computeMidpoint(left, right);
// mark as converged
s_left[addr] = lambda;
s_right[addr] = lambda;
} else {
// store current limits
s_left[addr] = left;
s_right[addr] = right;
}
}
////////////////////////////////////////////////////////////////////////////////
//! Compute number of eigenvalues that are smaller than x given a symmetric,
//! real, and tridiagonal matrix
//! @param g_d diagonal elements stored in global memory
//! @param g_s superdiagonal elements stored in global memory
//! @param n size of matrix
//! @param x value for which the number of eigenvalues that are smaller is
//! seeked
//! @param tid thread identified (e.g. threadIdx.x or gtid)
//! @param num_intervals_active number of active intervals / threads that
//! currently process an interval
//! @param s_d scratch space to store diagonal entries of the tridiagonal
//! matrix in shared memory
//! @param s_s scratch space to store superdiagonal entries of the tridiagonal
//! matrix in shared memory
//! @param converged flag if the current thread is already converged (that
//! is count does not have to be computed)
////////////////////////////////////////////////////////////////////////////////
__device__ inline unsigned int computeNumSmallerEigenvals(
float *g_d, float *g_s, const unsigned int n, const float x,
const unsigned int tid, const unsigned int num_intervals_active, float *s_d,
float *s_s, unsigned int converged, cg::thread_block cta) {
float delta = 1.0f;
unsigned int count = 0;
cg::sync(cta);
// read data into shared memory
if (threadIdx.x < n) {
s_d[threadIdx.x] = *(g_d + threadIdx.x);
s_s[threadIdx.x] = *(g_s + threadIdx.x - 1);
}
cg::sync(cta);
// perform loop only for active threads
if ((tid < num_intervals_active) && (0 == converged)) {
// perform (optimized) Gaussian elimination to determine the number
// of eigenvalues that are smaller than n
for (unsigned int k = 0; k < n; ++k) {
delta = s_d[k] - x - (s_s[k] * s_s[k]) / delta;
count += (delta < 0) ? 1 : 0;
}
} // end if thread currently processing an interval
return count;
}
////////////////////////////////////////////////////////////////////////////////
//! Compute number of eigenvalues that are smaller than x given a symmetric,
//! real, and tridiagonal matrix
//! @param g_d diagonal elements stored in global memory
//! @param g_s superdiagonal elements stored in global memory
//! @param n size of matrix
//! @param x value for which the number of eigenvalues that are smaller is
//! seeked
//! @param tid thread identified (e.g. threadIdx.x or gtid)
//! @param num_intervals_active number of active intervals / threads that
//! currently process an interval
//! @param s_d scratch space to store diagonal entries of the tridiagonal
//! matrix in shared memory
//! @param s_s scratch space to store superdiagonal entries of the tridiagonal
//! matrix in shared memory
//! @param converged flag if the current thread is already converged (that
//! is count does not have to be computed)
////////////////////////////////////////////////////////////////////////////////
__device__ inline unsigned int computeNumSmallerEigenvalsLarge(
float *g_d, float *g_s, const unsigned int n, const float x,
const unsigned int tid, const unsigned int num_intervals_active, float *s_d,
float *s_s, unsigned int converged, cg::thread_block cta) {
float delta = 1.0f;
unsigned int count = 0;
unsigned int rem = n;
// do until whole diagonal and superdiagonal has been loaded and processed
for (unsigned int i = 0; i < n; i += blockDim.x) {
cg::sync(cta);
// read new chunk of data into shared memory
if ((i + threadIdx.x) < n) {
s_d[threadIdx.x] = *(g_d + i + threadIdx.x);
s_s[threadIdx.x] = *(g_s + i + threadIdx.x - 1);
}
cg::sync(cta);
if (tid < num_intervals_active) {
// perform (optimized) Gaussian elimination to determine the number
// of eigenvalues that are smaller than n
for (unsigned int k = 0; k < min(rem, blockDim.x); ++k) {
delta = s_d[k] - x - (s_s[k] * s_s[k]) / delta;
// delta = (abs( delta) < (1.0e-10)) ? -(1.0e-10) : delta;
count += (delta < 0) ? 1 : 0;
}
} // end if thread currently processing an interval
rem -= blockDim.x;
}
return count;
}
////////////////////////////////////////////////////////////////////////////////
//! Store all non-empty intervals resulting from the subdivision of the interval
//! currently processed by the thread
//! @param addr base address for storing intervals
//! @param num_threads_active number of threads / intervals in current sweep
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param left lower limit of interval
//! @param mid midpoint of interval
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param mid_count eigenvalues less than \a mid
//! @param right_count eigenvalues less than \a right
//! @param precision desired precision for eigenvalues
//! @param compact_second_chunk shared mem flag if second chunk is used and
//! ergo requires compaction
//! @param s_compaction_list_exc helper array for stream compaction,
//! s_compaction_list_exc[tid] = 1 when the
//! thread generated two child intervals
//! @is_active_interval mark is thread has a second non-empty child interval
////////////////////////////////////////////////////////////////////////////////
template <class S, class T>
__device__ void storeNonEmptyIntervals(
unsigned int addr, const unsigned int num_threads_active, float *s_left,
float *s_right, T *s_left_count, T *s_right_count, float left, float mid,
float right, const S left_count, const S mid_count, const S right_count,
float precision, unsigned int &compact_second_chunk,
T *s_compaction_list_exc, unsigned int &is_active_second) {
// check if both child intervals are valid
if ((left_count != mid_count) && (mid_count != right_count)) {
// store the left interval
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, left, mid,
left_count, mid_count, precision);
// mark that a second interval has been generated, only stored after
// stream compaction of second chunk
is_active_second = 1;
s_compaction_list_exc[threadIdx.x] = 1;
atomicExch(&compact_second_chunk, 1);
} else {
// only one non-empty child interval
// mark that no second child
is_active_second = 0;
s_compaction_list_exc[threadIdx.x] = 0;
// store the one valid child interval
if (left_count != mid_count) {
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, left,
mid, left_count, mid_count, precision);
} else {
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, mid,
right, mid_count, right_count, precision);
}
}
}
////////////////////////////////////////////////////////////////////////////////
//! Create indices for compaction, that is process \a s_compaction_list_exc
//! which is 1 for intervals that generated a second child and 0 otherwise
//! and create for each of the non-zero elements the index where the new
//! interval belongs to in a compact representation of all generated second
//! childs
//! @param s_compaction_list_exc list containing the flags which threads
//! generated two children
//! @param num_threads_compaction number of threads to employ for compaction
////////////////////////////////////////////////////////////////////////////////
template <class T>
__device__ void createIndicesCompaction(T *s_compaction_list_exc,
unsigned int num_threads_compaction,
cg::thread_block cta) {
unsigned int offset = 1;
const unsigned int tid = threadIdx.x;
// higher levels of scan tree
for (int d = (num_threads_compaction >> 1); d > 0; d >>= 1) {
cg::sync(cta);
if (tid < d) {
unsigned int ai = offset * (2 * tid + 1) - 1;
unsigned int bi = offset * (2 * tid + 2) - 1;
s_compaction_list_exc[bi] =
s_compaction_list_exc[bi] + s_compaction_list_exc[ai];
}
offset <<= 1;
}
// traverse down tree: first down to level 2 across
for (int d = 2; d < num_threads_compaction; d <<= 1) {
offset >>= 1;
cg::sync(cta);
if (tid < (d - 1)) {
unsigned int ai = offset * (tid + 1) - 1;
unsigned int bi = ai + (offset >> 1);
s_compaction_list_exc[bi] =
s_compaction_list_exc[bi] + s_compaction_list_exc[ai];
}
}
cg::sync(cta);
}
///////////////////////////////////////////////////////////////////////////////
//! Perform stream compaction for second child intervals
//! @param s_left shared
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param mid midpoint of current interval (left of new interval)
//! @param right upper limit of interval
//! @param mid_count eigenvalues less than \a mid
//! @param s_compaction_list list containing the indices where the data has
//! to be stored
//! @param num_threads_active number of active threads / intervals
//! @is_active_interval mark is thread has a second non-empty child interval
///////////////////////////////////////////////////////////////////////////////
template <class T>
__device__ void compactIntervals(float *s_left, float *s_right, T *s_left_count,
T *s_right_count, float mid, float right,
unsigned int mid_count,
unsigned int right_count, T *s_compaction_list,
unsigned int num_threads_active,
unsigned int is_active_second) {
const unsigned int tid = threadIdx.x;
// perform compaction / copy data for all threads where the second
// child is not dead
if ((tid < num_threads_active) && (1 == is_active_second)) {
unsigned int addr_w = num_threads_active + s_compaction_list[tid];
s_left[addr_w] = mid;
s_right[addr_w] = right;
s_left_count[addr_w] = mid_count;
s_right_count[addr_w] = right_count;
}
}
///////////////////////////////////////////////////////////////////////////////
//! Store intervals that have already converged (w.r.t. the desired precision),
//! duplicating intervals that contain multiple eigenvalues
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param left lower limit of interval
//! @param mid midpoint of interval (updated if split is necessary)
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param mid_count eigenvalues less than \a mid
//! @param right_count eigenvalues less than \a right
//! @param s_compaction_list_exc helper array for stream compaction, updated
//! at tid if split is necessary
//! @param compact_second_chunk shared mem flag if second chunk is used and
//! ergo requires compaction
//! @param num_threads_active number of active threads / intervals
///////////////////////////////////////////////////////////////////////////////
template <class T, class S>
__device__ void storeIntervalConverged(float *s_left, float *s_right,
T *s_left_count, T *s_right_count,
float &left, float &mid, float &right,
S &left_count, S &mid_count,
S &right_count, T *s_compaction_list_exc,
unsigned int &compact_second_chunk,
const unsigned int num_threads_active) {
const unsigned int tid = threadIdx.x;
const unsigned int multiplicity = right_count - left_count;
// check multiplicity of eigenvalue
if (1 == multiplicity) {
// just re-store intervals, simple eigenvalue
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = right_count;
// mark that no second child / clear
s_right_count[tid + num_threads_active] = 0;
s_compaction_list_exc[tid] = 0;
} else {
// number of eigenvalues after the split less than mid
mid_count = left_count + (multiplicity >> 1);
// store left interval
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = mid_count;
mid = left;
// mark that second child interval exists
s_right_count[tid + num_threads_active] = right_count;
s_compaction_list_exc[tid] = 1;
compact_second_chunk = 1;
}
}
template <class T, class S>
__device__ void storeIntervalConverged(float *s_left, float *s_right,
T *s_left_count, T *s_right_count,
float &left, float &mid, float &right,
S &left_count, S &mid_count,
S &right_count, T *s_compaction_list_exc,
unsigned int &compact_second_chunk,
const unsigned int num_threads_active,
unsigned int &is_active_second) {
const unsigned int tid = threadIdx.x;
const unsigned int multiplicity = right_count - left_count;
// check multiplicity of eigenvalue
if (1 == multiplicity) {
// just re-store intervals, simple eigenvalue
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = right_count;
// mark that no second child / clear
is_active_second = 0;
s_compaction_list_exc[tid] = 0;
} else {
// number of eigenvalues after the split less than mid
mid_count = left_count + (multiplicity >> 1);
// store left interval
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = mid_count;
mid = left;
// mark that second child interval exists
is_active_second = 1;
s_compaction_list_exc[tid] = 1;
compact_second_chunk = 1;
}
}
///////////////////////////////////////////////////////////////////////////////
//! Subdivide interval if active and not already converged
//! @param tid id of thread
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param num_threads_active number of active threads in warp
//! @param left lower limit of interval
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param right_count eigenvalues less than \a right
//! @param all_threads_converged shared memory flag if all threads are
//! converged
///////////////////////////////////////////////////////////////////////////////
template <class T>
__device__ void subdivideActiveInterval(
const unsigned int tid, float *s_left, float *s_right, T *s_left_count,
T *s_right_count, const unsigned int num_threads_active, float &left,
float &right, unsigned int &left_count, unsigned int &right_count,
float &mid, unsigned int &all_threads_converged) {
// for all active threads
if (tid < num_threads_active) {
left = s_left[tid];
right = s_right[tid];
left_count = s_left_count[tid];
right_count = s_right_count[tid];
// check if thread already converged
if (left != right) {
mid = computeMidpoint(left, right);
atomicExch(&all_threads_converged, 0);
} else if ((right_count - left_count) > 1) {
// mark as not converged if multiple eigenvalues enclosed
// duplicate interval in storeIntervalsConverged()
atomicExch(&all_threads_converged, 0);
}
} // end for all active threads
}
#endif // #ifndef _BISECT_UTIL_H_