mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 20:39:17 +08:00
666 lines
21 KiB
C++
666 lines
21 KiB
C++
|
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This example demonstrates how to get better performance by
|
||
|
* batching CUBLAS calls with the use of using streams
|
||
|
*/
|
||
|
|
||
|
#include <ctype.h>
|
||
|
#include <math.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
|
#include <float.h>
|
||
|
#endif
|
||
|
|
||
|
/* Using updated (v2) interfaces to cublas and cusparse */
|
||
|
#include <cublas_v2.h>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
// Utilities and system includes
|
||
|
#include <helper_cuda.h>
|
||
|
|
||
|
#include "batchCUBLAS.h"
|
||
|
|
||
|
const char *sSDKname = "batchCUBLAS";
|
||
|
|
||
|
//==============================================================================
|
||
|
// Device information utilities
|
||
|
//==============================================================================
|
||
|
|
||
|
#if defined(__cplusplus)
|
||
|
extern "C" {
|
||
|
#endif /* __cplusplus */
|
||
|
|
||
|
int getDeviceVersion(void) {
|
||
|
int device;
|
||
|
struct cudaDeviceProp properties;
|
||
|
|
||
|
if (cudaGetDevice(&device) != cudaSuccess) {
|
||
|
printf("failed to get device\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (cudaGetDeviceProperties(&properties, device) != cudaSuccess) {
|
||
|
printf("failed to get properties\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return properties.major * 100 + properties.minor * 10;
|
||
|
}
|
||
|
|
||
|
size_t getDeviceMemory(void) {
|
||
|
struct cudaDeviceProp properties;
|
||
|
int device;
|
||
|
|
||
|
if (cudaGetDevice(&device) != cudaSuccess) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (cudaGetDeviceProperties(&properties, device) != cudaSuccess) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return properties.totalGlobalMem;
|
||
|
}
|
||
|
#if defined(__cplusplus)
|
||
|
}
|
||
|
#endif /* __cplusplus */
|
||
|
|
||
|
//==============================================================================
|
||
|
// random utilities
|
||
|
//==============================================================================
|
||
|
|
||
|
template <typename T_ELEM>
|
||
|
void fillupMatrix(T_ELEM *A, int lda, int rows, int cols, int seed = 0);
|
||
|
|
||
|
template <typename T_ELEM>
|
||
|
void fillupMatrix(T_ELEM *A, int lda, int rows, int cols, int seed) {
|
||
|
for (int j = 0; j < cols; j++) {
|
||
|
for (int i = 0; i < rows; i++) {
|
||
|
A[i + lda * j] = cuGet<T_ELEM>(
|
||
|
((double)(((lda * i + j + seed) % 253) + 1)) / 256.0,
|
||
|
((double)((((cols * i + j) + 123 + seed) % 253) + 1)) / 256.0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* Explicit instantiation */
|
||
|
template void fillupMatrix<float>(float *A, int lda, int rows, int cols,
|
||
|
int seed);
|
||
|
template void fillupMatrix<double>(double *A, int lda, int rows, int cols,
|
||
|
int seed);
|
||
|
|
||
|
/* For debugging */
|
||
|
void printCuType(const char *str, float A) {
|
||
|
fprintf(stdout, "%s (0x%08x, %g)", str, floatAsUInt(A), A);
|
||
|
}
|
||
|
|
||
|
void printCuType(const char *str, double A) {
|
||
|
fprintf(stdout, "%s (0x%016llx, %g)", str, doubleAsULL(A), A);
|
||
|
}
|
||
|
|
||
|
//==============================================================================
|
||
|
// defines and structures
|
||
|
//==============================================================================
|
||
|
|
||
|
#define CUBLAS_SGEMM_MAX_ULP_ERR (.3)
|
||
|
#define CUBLAS_DGEMM_MAX_ULP_ERR (1.e-3)
|
||
|
#define CUBLAS_SGEMM_MAX_RELATIVE_ERR (6.e-6)
|
||
|
#define CUBLAS_DGEMM_MAX_RELATIVE_ERR (0.0)
|
||
|
#define CUBLAS_GEMM_TEST_COUNT (30)
|
||
|
#define BENCH_MATRIX_M (128)
|
||
|
#define BENCH_MATRIX_K (128)
|
||
|
#define BENCH_MATRIX_N (128)
|
||
|
|
||
|
#define CLEANUP() \
|
||
|
do { \
|
||
|
if (A) free(A); \
|
||
|
if (B) free(B); \
|
||
|
if (C) free(C); \
|
||
|
for (int i = 0; i < opts.N; ++i) { \
|
||
|
if (devPtrA[i]) cudaFree(devPtrA[i]); \
|
||
|
if (devPtrB[i]) cudaFree(devPtrB[i]); \
|
||
|
if (devPtrC[i]) cudaFree(devPtrC[i]); \
|
||
|
} \
|
||
|
if (devPtrA) free(devPtrA); \
|
||
|
if (devPtrB) free(devPtrB); \
|
||
|
if (devPtrC) free(devPtrC); \
|
||
|
if (devPtrA_dev) cudaFree(devPtrA_dev); \
|
||
|
if (devPtrB_dev) cudaFree(devPtrB_dev); \
|
||
|
if (devPtrC_dev) cudaFree(devPtrC_dev); \
|
||
|
fflush(stdout); \
|
||
|
} while (0)
|
||
|
|
||
|
enum testMethod { tmRegular, tmStream, tmBatched };
|
||
|
|
||
|
struct gemmOpts {
|
||
|
int m;
|
||
|
int n;
|
||
|
int k;
|
||
|
testMethod test_method;
|
||
|
char *elem_type;
|
||
|
int N; // number of multiplications
|
||
|
};
|
||
|
|
||
|
template <typename T_ELEM>
|
||
|
struct gemmTestParams {
|
||
|
cublasOperation_t transa;
|
||
|
cublasOperation_t transb;
|
||
|
int m;
|
||
|
int n;
|
||
|
int k;
|
||
|
T_ELEM alpha;
|
||
|
T_ELEM beta;
|
||
|
};
|
||
|
|
||
|
//==============================================================================
|
||
|
// template wrappers for cuda functions
|
||
|
//==============================================================================
|
||
|
|
||
|
static inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
|
||
|
cublasOperation_t transa,
|
||
|
cublasOperation_t transb, int m, int n,
|
||
|
int k, float *alpha, const float *A,
|
||
|
int lda, float *B, int ldb,
|
||
|
float *beta, float *C, int ldc) {
|
||
|
return cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb,
|
||
|
beta, C, ldc);
|
||
|
}
|
||
|
|
||
|
static inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
|
||
|
cublasOperation_t transa,
|
||
|
cublasOperation_t transb, int m, int n,
|
||
|
int k, double *alpha, const double *A,
|
||
|
int lda, double *B, int ldb,
|
||
|
double *beta, double *C, int ldc) {
|
||
|
return cublasDgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb,
|
||
|
beta, C, ldc);
|
||
|
}
|
||
|
|
||
|
static inline cublasStatus_t cublasXgemmBatched(
|
||
|
cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb,
|
||
|
int m, int n, int k, float *alpha, const float *Aarray[], int lda,
|
||
|
const float *Barray[], int ldb, float *beta, float *Carray[], int ldc,
|
||
|
int batchCount) {
|
||
|
#if CUDART_VERSION >= 4010
|
||
|
return cublasSgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda,
|
||
|
Barray, ldb, beta, Carray, ldc, batchCount);
|
||
|
#else
|
||
|
return CUBLAS_STATUS_SUCCESS;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static inline cublasStatus_t cublasXgemmBatched(
|
||
|
cublasHandle_t handle, cublasOperation_t transa, cublasOperation_t transb,
|
||
|
int m, int n, int k, double *alpha, const double *Aarray[], int lda,
|
||
|
const double *Barray[], int ldb, double *beta, double *Carray[], int ldc,
|
||
|
int batchCount) {
|
||
|
#if CUDART_VERSION >= 4010
|
||
|
return cublasDgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda,
|
||
|
Barray, ldb, beta, Carray, ldc, batchCount);
|
||
|
#else
|
||
|
return CUBLAS_STATUS_SUCCESS;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//==============================================================================
|
||
|
// Primary Application code
|
||
|
//==============================================================================
|
||
|
|
||
|
static int processArgs(int argc, char *argv[], struct gemmOpts *opts) {
|
||
|
int error = 0;
|
||
|
int oldError;
|
||
|
memset(opts, 0, sizeof(*opts));
|
||
|
static char default_type[] = "d"; // default double
|
||
|
opts->elem_type = default_type;
|
||
|
opts->N = 10;
|
||
|
|
||
|
while (argc) {
|
||
|
oldError = error;
|
||
|
|
||
|
if (*argv[0] == SWITCH_CHAR) {
|
||
|
switch (*(argv[0] + 1)) {
|
||
|
case 'm':
|
||
|
opts->m = (int)atol(argv[0] + 2);
|
||
|
break;
|
||
|
|
||
|
case 'n':
|
||
|
opts->n = (int)atol(argv[0] + 2);
|
||
|
break;
|
||
|
|
||
|
case 'k':
|
||
|
opts->k = (int)atol(argv[0] + 2);
|
||
|
break;
|
||
|
|
||
|
case 'N':
|
||
|
opts->N = (int)atol(argv[0] + 2);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (error > oldError) {
|
||
|
fprintf(stderr, "Invalid switch '%c%s'\n", SWITCH_CHAR, argv[0] + 1);
|
||
|
}
|
||
|
|
||
|
argc -= 1;
|
||
|
argv++;
|
||
|
}
|
||
|
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
template <typename T_ELEM>
|
||
|
static int TESTGEN(gemm)(const struct gemmOpts *opts, int matrixM, int matrixN,
|
||
|
int matrixK, int &numTests,
|
||
|
struct gemmTestParams<T_ELEM> *params) {
|
||
|
static T_ELEM alpha[] = {cuGet<T_ELEM>(0, 0), cuGet<T_ELEM>(-1, -1),
|
||
|
cuGet<T_ELEM>(1, -2), cuGet<T_ELEM>(2, -1),
|
||
|
cuGet<T_ELEM>(0, -3)};
|
||
|
static T_ELEM beta[] = {cuGet<T_ELEM>(0, 0), cuGet<T_ELEM>(-1, -1),
|
||
|
cuGet<T_ELEM>(1, -2), cuGet<T_ELEM>(2, -1),
|
||
|
cuGet<T_ELEM>(0, -3)};
|
||
|
|
||
|
#define NBR_ALPHAS (sizeof(alpha) / sizeof(alpha[0]))
|
||
|
#define NBR_BETAS (sizeof(beta) / sizeof(beta[0]))
|
||
|
static T_ELEM theAlpha;
|
||
|
static T_ELEM theBeta;
|
||
|
static int state;
|
||
|
static int m;
|
||
|
static int n;
|
||
|
static int k;
|
||
|
|
||
|
if (numTests-- <= 0) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
theAlpha = alpha[cuRand() % NBR_ALPHAS];
|
||
|
theBeta = beta[cuRand() % NBR_BETAS];
|
||
|
params->transa = CUBLAS_OP_N;
|
||
|
params->transb = CUBLAS_OP_N;
|
||
|
m = matrixM;
|
||
|
n = matrixN;
|
||
|
k = matrixK;
|
||
|
params->m = m;
|
||
|
params->n = n;
|
||
|
params->k = k;
|
||
|
params->alpha = theAlpha;
|
||
|
params->beta = theBeta;
|
||
|
|
||
|
printf("#### args: ta=%d tb=%d m=%d n=%d k=%d ", (unsigned int)params->transa,
|
||
|
(unsigned int)params->transb, params->m, params->n, params->k);
|
||
|
printCuType(" alpha =", params->alpha);
|
||
|
printCuType(" beta=", params->beta);
|
||
|
printf("\n");
|
||
|
|
||
|
m = cuRand() % matrixM;
|
||
|
n = cuRand() % matrixN;
|
||
|
k = cuRand() % matrixK;
|
||
|
|
||
|
state = cuRand() % 9;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
template <typename T_ELEM>
|
||
|
void fillupMatrixDebug(T_ELEM *A, int lda, int rows, int cols) {
|
||
|
for (int j = 0; j < cols; j++) {
|
||
|
for (int i = 0; i < rows; i++) {
|
||
|
A[i + lda * j] = cuGet<T_ELEM>(i + j);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T_ELEM>
|
||
|
int test_gemm_loop(struct gemmOpts &opts, float err, double max_relative_error,
|
||
|
cublasHandle_t handle) {
|
||
|
struct gemmTestParams<T_ELEM> params;
|
||
|
cudaStream_t *streamArray = 0;
|
||
|
cublasStatus_t status1, status2, status3;
|
||
|
T_ELEM *A = NULL;
|
||
|
T_ELEM *B = NULL;
|
||
|
T_ELEM *C = NULL;
|
||
|
T_ELEM **devPtrA = 0;
|
||
|
T_ELEM **devPtrB = 0;
|
||
|
T_ELEM **devPtrC = 0;
|
||
|
T_ELEM **devPtrA_dev = NULL;
|
||
|
T_ELEM **devPtrB_dev = NULL;
|
||
|
T_ELEM **devPtrC_dev = NULL;
|
||
|
int matrixM, matrixN, matrixK;
|
||
|
int rowsA, rowsB, rowsC;
|
||
|
int colsA, colsB, colsC;
|
||
|
int matrixSizeA, matrixSizeB, matrixSizeC;
|
||
|
int errors;
|
||
|
double start, stop;
|
||
|
|
||
|
printf("Testing %cgemm\n", *opts.elem_type);
|
||
|
|
||
|
matrixM = (opts.m) ? opts.m : BENCH_MATRIX_M;
|
||
|
matrixN = (opts.n) ? opts.n : BENCH_MATRIX_N;
|
||
|
matrixK = (opts.k) ? opts.k : BENCH_MATRIX_K;
|
||
|
|
||
|
rowsA = imax(1, matrixM);
|
||
|
colsA = imax(1, matrixK);
|
||
|
rowsB = imax(1, matrixK);
|
||
|
colsB = imax(1, matrixN);
|
||
|
rowsC = imax(1, matrixM);
|
||
|
colsC = imax(1, matrixN);
|
||
|
|
||
|
matrixSizeA = rowsA * colsA;
|
||
|
matrixSizeB = rowsB * colsB;
|
||
|
matrixSizeC = rowsC * colsC;
|
||
|
|
||
|
devPtrA = (T_ELEM **)malloc(opts.N * sizeof(*devPtrA));
|
||
|
devPtrB = (T_ELEM **)malloc(opts.N * sizeof(*devPtrB));
|
||
|
devPtrC = (T_ELEM **)malloc(opts.N * sizeof(*devPtrC));
|
||
|
|
||
|
for (int i = 0; i < opts.N; i++) {
|
||
|
cudaError_t err1 =
|
||
|
cudaMalloc((void **)&devPtrA[i], matrixSizeA * sizeof(devPtrA[0][0]));
|
||
|
cudaError_t err2 =
|
||
|
cudaMalloc((void **)&devPtrB[i], matrixSizeB * sizeof(devPtrB[0][0]));
|
||
|
cudaError_t err3 =
|
||
|
cudaMalloc((void **)&devPtrC[i], matrixSizeC * sizeof(devPtrC[0][0]));
|
||
|
|
||
|
if ((err1 != cudaSuccess) || (err2 != cudaSuccess) ||
|
||
|
(err3 != cudaSuccess)) {
|
||
|
CLEANUP();
|
||
|
fprintf(stderr, "!!!! GPU memory allocation error\n");
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// For batched processing we need those arrays on the device
|
||
|
if (opts.test_method == tmBatched) {
|
||
|
cudaError_t err1 =
|
||
|
cudaMalloc((void **)&devPtrA_dev, opts.N * sizeof(*devPtrA));
|
||
|
cudaError_t err2 =
|
||
|
cudaMalloc((void **)&devPtrB_dev, opts.N * sizeof(*devPtrB));
|
||
|
cudaError_t err3 =
|
||
|
cudaMalloc((void **)&devPtrC_dev, opts.N * sizeof(*devPtrC));
|
||
|
|
||
|
if ((err1 != cudaSuccess) || (err2 != cudaSuccess) ||
|
||
|
(err3 != cudaSuccess)) {
|
||
|
CLEANUP();
|
||
|
fprintf(stderr, "!!!! GPU memory allocation error\n");
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
|
||
|
err1 = cudaMemcpy(devPtrA_dev, devPtrA, opts.N * sizeof(*devPtrA),
|
||
|
cudaMemcpyHostToDevice);
|
||
|
err2 = cudaMemcpy(devPtrB_dev, devPtrB, opts.N * sizeof(*devPtrB),
|
||
|
cudaMemcpyHostToDevice);
|
||
|
err3 = cudaMemcpy(devPtrC_dev, devPtrC, opts.N * sizeof(*devPtrC),
|
||
|
cudaMemcpyHostToDevice);
|
||
|
|
||
|
if ((err1 != cudaSuccess) || (err2 != cudaSuccess) ||
|
||
|
(err3 != cudaSuccess)) {
|
||
|
CLEANUP();
|
||
|
fprintf(stderr, "!!!! cannot copy pointer array to device\n");
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
A = (T_ELEM *)malloc(matrixSizeA * sizeof(A[0]));
|
||
|
B = (T_ELEM *)malloc(matrixSizeB * sizeof(B[0]));
|
||
|
C = (T_ELEM *)malloc(matrixSizeC * sizeof(C[0]));
|
||
|
|
||
|
if ((!A) || (!B) || (!C)) {
|
||
|
CLEANUP();
|
||
|
fprintf(stderr, "!!!! system memory allocation error\n");
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
|
||
|
streamArray = (cudaStream_t *)malloc(opts.N * sizeof(cudaStream_t *));
|
||
|
|
||
|
for (int i = 0; i < opts.N; i++) {
|
||
|
if (opts.test_method == tmStream) {
|
||
|
cudaError_t cudaErr = cudaStreamCreate(&streamArray[i]);
|
||
|
|
||
|
if (cudaErr != cudaSuccess) {
|
||
|
CLEANUP();
|
||
|
fprintf(stderr, "!!!! cannot create stream\n");
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
} else {
|
||
|
streamArray[i] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
errors = 0;
|
||
|
int numTests = 1;
|
||
|
|
||
|
while (TESTGEN(gemm)(&opts, matrixM, matrixN, matrixK, numTests, ¶ms) ==
|
||
|
0) {
|
||
|
printf("#### args: lda=%d ldb=%d ldc=%d\n", rowsA, rowsB, rowsC);
|
||
|
|
||
|
// fillup with Nan first (so lda padding is full on Nan)
|
||
|
memset(A, 0xFF, matrixSizeA * sizeof(A[0]));
|
||
|
fillupMatrixDebug(A, rowsA, params.m, params.k);
|
||
|
memset(B, 0xFF, matrixSizeB * sizeof(B[0]));
|
||
|
fillupMatrix(B, rowsB, params.k, params.n, 121);
|
||
|
|
||
|
if (!cuEqual(params.beta, cuGet<T_ELEM>(0))) {
|
||
|
fillupMatrix(C, rowsC, params.m, params.n);
|
||
|
} else {
|
||
|
/* fill with SNaNs to make sure ZGEMM doesn't access C */
|
||
|
memset(C, 0xFF, matrixSizeC * sizeof(C[0]));
|
||
|
}
|
||
|
|
||
|
double flopsCoef = 2.0;
|
||
|
|
||
|
for (int i = 0; i < opts.N; i++) {
|
||
|
status1 = cublasSetMatrix(rowsA, colsA, sizeof(A[0]), A, rowsA,
|
||
|
devPtrA[i], rowsA);
|
||
|
status2 = cublasSetMatrix(rowsB, colsB, sizeof(B[0]), B, rowsB,
|
||
|
devPtrB[i], rowsB);
|
||
|
status3 = cublasSetMatrix(rowsC, colsC, sizeof(C[0]), C, rowsC,
|
||
|
devPtrC[i], rowsC);
|
||
|
|
||
|
if ((status1 != CUBLAS_STATUS_SUCCESS) || (status2 != status1) ||
|
||
|
(status3 != status1)) {
|
||
|
CLEANUP();
|
||
|
fprintf(stderr, "!!!! GPU access error (write)\n");
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
start = second();
|
||
|
|
||
|
if (opts.test_method == tmBatched) {
|
||
|
cublasSetStream(handle, streamArray[0]);
|
||
|
status1 = cublasXgemmBatched(handle, params.transa, params.transb,
|
||
|
params.m, params.n, params.k, ¶ms.alpha,
|
||
|
(const T_ELEM **)devPtrA_dev, rowsA,
|
||
|
(const T_ELEM **)devPtrB_dev, rowsB,
|
||
|
¶ms.beta, devPtrC_dev, rowsC, opts.N);
|
||
|
|
||
|
if (status1 != CUBLAS_STATUS_SUCCESS) {
|
||
|
cudaError_t cudaStatus = cudaGetLastError();
|
||
|
CLEANUP();
|
||
|
fprintf(stderr,
|
||
|
"!!!! GPU program execution error : cublas Error=%d, cuda "
|
||
|
"Error=%d,(%s)\n",
|
||
|
status1, cudaStatus, cudaGetErrorString(cudaStatus));
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
} else {
|
||
|
for (int i = 0; i < opts.N; i++) {
|
||
|
cublasSetStream(handle, streamArray[i]);
|
||
|
status1 =
|
||
|
cublasXgemm(handle, params.transa, params.transb, params.m,
|
||
|
params.n, params.k, ¶ms.alpha, devPtrA[i], rowsA,
|
||
|
devPtrB[i], rowsB, ¶ms.beta, devPtrC[i], rowsC);
|
||
|
|
||
|
if (status1 != CUBLAS_STATUS_SUCCESS) {
|
||
|
cudaError_t cudaStatus = cudaGetLastError();
|
||
|
CLEANUP();
|
||
|
fprintf(stderr,
|
||
|
"!!!! GPU program execution error : cublas Error=%d, cuda "
|
||
|
"Error=%d,(%s)\n",
|
||
|
status1, cudaStatus, cudaGetErrorString(cudaStatus));
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cudaError_t cudaStatus = cudaDeviceSynchronize();
|
||
|
|
||
|
if (cudaStatus != cudaSuccess) {
|
||
|
CLEANUP();
|
||
|
fprintf(stderr,
|
||
|
"!!!! GPU program execution error on cudaDeviceSynchronize : "
|
||
|
"cudaError=%d,(%s)\n",
|
||
|
cudaStatus, cudaGetErrorString(cudaStatus));
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
|
||
|
stop = second();
|
||
|
|
||
|
fprintf(stdout, "^^^^ elapsed = %10.8f sec GFLOPS=%g\n", (stop - start),
|
||
|
opts.N * (1e-9 * flopsCoef * params.m * params.n * params.k) /
|
||
|
(stop - start));
|
||
|
|
||
|
} // end while (TESTGEN..
|
||
|
|
||
|
CLEANUP();
|
||
|
fprintf(stdout, "@@@@ %cgemm test %s\n", *opts.elem_type,
|
||
|
errors ? "FAIL" : "OK");
|
||
|
return CUBLASTEST_PASSED;
|
||
|
}
|
||
|
|
||
|
int main(int argc, char *argv[]) {
|
||
|
struct gemmOpts opts;
|
||
|
int errors, nTimes, nTotalErrors = 0;
|
||
|
int status = CUBLASTEST_PASSED;
|
||
|
|
||
|
printf("%s Starting...\n\n", sSDKname);
|
||
|
|
||
|
int dev = findCudaDevice(argc, (const char **)argv);
|
||
|
|
||
|
if (dev == -1) {
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
|
||
|
errors = processArgs(argc, argv, &opts);
|
||
|
|
||
|
if (errors) {
|
||
|
fprintf(stdout,
|
||
|
"\n Usage: batchcublas [-mSIZE_M] [-nSIZE_N] [-kSIZE_N] "
|
||
|
"[-NSIZE_NUM_ITERATIONS] [-qatest] [-noprompt]\n");
|
||
|
return CUBLASTEST_FAILED;
|
||
|
}
|
||
|
|
||
|
cublasHandle_t handle;
|
||
|
|
||
|
if (cublasCreate(&handle) != CUBLAS_STATUS_SUCCESS) {
|
||
|
fprintf(stdout, "CUBLAS initialization failed!\n");
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
// Run single kernels
|
||
|
fprintf(stdout, "\n ==== Running single kernels ==== \n\n");
|
||
|
nTimes = opts.N;
|
||
|
opts.N = 1;
|
||
|
*(opts.elem_type) = 's';
|
||
|
status = test_gemm_loop<float>(opts, (float)CUBLAS_SGEMM_MAX_ULP_ERR,
|
||
|
(double)CUBLAS_SGEMM_MAX_RELATIVE_ERR, handle);
|
||
|
|
||
|
// Run Double version
|
||
|
*(opts.elem_type) = 'd';
|
||
|
|
||
|
if (getDeviceVersion() < DEV_VER_DBL_SUPPORT) {
|
||
|
fprintf(stdout, "@@@@ dgemm test WAIVED due to lack of DP support\n");
|
||
|
exit(EXIT_WAIVED);
|
||
|
}
|
||
|
|
||
|
status =
|
||
|
test_gemm_loop<double>(opts, (float)CUBLAS_DGEMM_MAX_ULP_ERR,
|
||
|
(double)CUBLAS_DGEMM_MAX_RELATIVE_ERR, handle);
|
||
|
nTotalErrors += (status == CUBLASTEST_PASSED ? 0 : 1);
|
||
|
opts.N = nTimes;
|
||
|
|
||
|
// Run with and without streams and then batched. The batched functions are a
|
||
|
// feature new feature in 4.1
|
||
|
#if CUDART_VERSION >= 4010
|
||
|
|
||
|
for (int ii = 0; ii < 3; ii++) {
|
||
|
#else
|
||
|
|
||
|
for (int ii = 0; ii < 2; ii++) {
|
||
|
#endif
|
||
|
|
||
|
switch (ii) {
|
||
|
case 0:
|
||
|
opts.test_method = tmRegular;
|
||
|
fprintf(stdout, "\n ==== Running N=%d without streams ==== \n\n",
|
||
|
opts.N);
|
||
|
break;
|
||
|
|
||
|
case 1:
|
||
|
opts.test_method = tmStream;
|
||
|
fprintf(stdout, "\n ==== Running N=%d with streams ==== \n\n", opts.N);
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
opts.test_method = tmBatched;
|
||
|
fprintf(stdout, "\n ==== Running N=%d batched ==== \n\n", opts.N);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// Run single version
|
||
|
*(opts.elem_type) = 's';
|
||
|
status =
|
||
|
test_gemm_loop<float>(opts, (float)CUBLAS_SGEMM_MAX_ULP_ERR,
|
||
|
(double)CUBLAS_SGEMM_MAX_RELATIVE_ERR, handle);
|
||
|
nTotalErrors += (status == CUBLASTEST_PASSED ? 0 : 1);
|
||
|
|
||
|
// Run Double version
|
||
|
*(opts.elem_type) = 'd';
|
||
|
|
||
|
// Test doesn't meet minSpec, will will wave the DP test
|
||
|
if (getDeviceVersion() < DEV_VER_DBL_SUPPORT) {
|
||
|
fprintf(stdout, "@@@@ dgemm test WAIVED due to lack of DP support\n");
|
||
|
exit(EXIT_WAIVED);
|
||
|
} else {
|
||
|
status =
|
||
|
test_gemm_loop<double>(opts, (float)CUBLAS_DGEMM_MAX_ULP_ERR,
|
||
|
(double)CUBLAS_DGEMM_MAX_RELATIVE_ERR, handle);
|
||
|
nTotalErrors += (status == CUBLASTEST_PASSED ? 0 : 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cublasDestroy(handle);
|
||
|
|
||
|
printf("\nTest Summary\n");
|
||
|
printf("%d error(s)\n", nTotalErrors);
|
||
|
exit(nTotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
|
||
|
}
|