cuda-samples/Samples/deviceQuery/deviceQuery.cpp

339 lines
13 KiB
C++
Raw Normal View History

2018-03-03 08:07:37 +08:00
/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This sample queries the properties of the CUDA devices present in the system
* via CUDA Runtime API. */
// std::system includes
#include <cuda_runtime.h>
#include <helper_cuda.h>
#include <iostream>
#include <memory>
#include <string>
int *pArgc = NULL;
char **pArgv = NULL;
#if CUDART_VERSION < 5000
// CUDA-C includes
#include <cuda.h>
// This function wraps the CUDA Driver API into a template function
template <class T>
inline void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute,
int device) {
CUresult error = cuDeviceGetAttribute(attribute, device_attribute, device);
if (CUDA_SUCCESS != error) {
fprintf(
stderr,
"cuSafeCallNoSync() Driver API error = %04d from file <%s>, line %i.\n",
error, __FILE__, __LINE__);
exit(EXIT_FAILURE);
}
}
#endif /* CUDART_VERSION < 5000 */
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
pArgc = &argc;
pArgv = argv;
printf("%s Starting...\n\n", argv[0]);
printf(
" CUDA Device Query (Runtime API) version (CUDART static linking)\n\n");
int deviceCount = 0;
cudaError_t error_id = cudaGetDeviceCount(&deviceCount);
if (error_id != cudaSuccess) {
printf("cudaGetDeviceCount returned %d\n-> %s\n",
static_cast<int>(error_id), cudaGetErrorString(error_id));
printf("Result = FAIL\n");
exit(EXIT_FAILURE);
}
// This function call returns 0 if there are no CUDA capable devices.
if (deviceCount == 0) {
printf("There are no available device(s) that support CUDA\n");
} else {
printf("Detected %d CUDA Capable device(s)\n", deviceCount);
}
int dev, driverVersion = 0, runtimeVersion = 0;
for (dev = 0; dev < deviceCount; ++dev) {
cudaSetDevice(dev);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
printf("\nDevice %d: \"%s\"\n", dev, deviceProp.name);
// Console log
cudaDriverGetVersion(&driverVersion);
cudaRuntimeGetVersion(&runtimeVersion);
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n",
driverVersion / 1000, (driverVersion % 100) / 10,
runtimeVersion / 1000, (runtimeVersion % 100) / 10);
printf(" CUDA Capability Major/Minor version number: %d.%d\n",
deviceProp.major, deviceProp.minor);
char msg[256];
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(msg, sizeof(msg),
" Total amount of global memory: %.0f MBytes "
"(%llu bytes)\n",
static_cast<float>(deviceProp.totalGlobalMem / 1048576.0f),
(unsigned long long)deviceProp.totalGlobalMem);
#else
snprintf(msg, sizeof(msg),
" Total amount of global memory: %.0f MBytes "
"(%llu bytes)\n",
static_cast<float>(deviceProp.totalGlobalMem / 1048576.0f),
(unsigned long long)deviceProp.totalGlobalMem);
#endif
printf("%s", msg);
printf(" (%2d) Multiprocessors, (%3d) CUDA Cores/MP: %d CUDA Cores\n",
deviceProp.multiProcessorCount,
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),
_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
deviceProp.multiProcessorCount);
printf(
" GPU Max Clock rate: %.0f MHz (%0.2f "
"GHz)\n",
deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f);
#if CUDART_VERSION >= 5000
// This is supported in CUDA 5.0 (runtime API device properties)
printf(" Memory Clock rate: %.0f Mhz\n",
deviceProp.memoryClockRate * 1e-3f);
printf(" Memory Bus Width: %d-bit\n",
deviceProp.memoryBusWidth);
if (deviceProp.l2CacheSize) {
printf(" L2 Cache Size: %d bytes\n",
deviceProp.l2CacheSize);
}
#else
// This only available in CUDA 4.0-4.2 (but these were only exposed in the
// CUDA Driver API)
int memoryClock;
getCudaAttribute<int>(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE,
dev);
printf(" Memory Clock rate: %.0f Mhz\n",
memoryClock * 1e-3f);
int memBusWidth;
getCudaAttribute<int>(&memBusWidth,
CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev);
printf(" Memory Bus Width: %d-bit\n",
memBusWidth);
int L2CacheSize;
getCudaAttribute<int>(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev);
if (L2CacheSize) {
printf(" L2 Cache Size: %d bytes\n",
L2CacheSize);
}
#endif
printf(
" Maximum Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d, "
"%d), 3D=(%d, %d, %d)\n",
deviceProp.maxTexture1D, deviceProp.maxTexture2D[0],
deviceProp.maxTexture2D[1], deviceProp.maxTexture3D[0],
deviceProp.maxTexture3D[1], deviceProp.maxTexture3D[2]);
printf(
" Maximum Layered 1D Texture Size, (num) layers 1D=(%d), %d layers\n",
deviceProp.maxTexture1DLayered[0], deviceProp.maxTexture1DLayered[1]);
printf(
" Maximum Layered 2D Texture Size, (num) layers 2D=(%d, %d), %d "
"layers\n",
deviceProp.maxTexture2DLayered[0], deviceProp.maxTexture2DLayered[1],
deviceProp.maxTexture2DLayered[2]);
printf(" Total amount of constant memory: %lu bytes\n",
deviceProp.totalConstMem);
printf(" Total amount of shared memory per block: %lu bytes\n",
deviceProp.sharedMemPerBlock);
printf(" Total number of registers available per block: %d\n",
deviceProp.regsPerBlock);
printf(" Warp size: %d\n",
deviceProp.warpSize);
printf(" Maximum number of threads per multiprocessor: %d\n",
deviceProp.maxThreadsPerMultiProcessor);
printf(" Maximum number of threads per block: %d\n",
deviceProp.maxThreadsPerBlock);
printf(" Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n",
deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1],
deviceProp.maxThreadsDim[2]);
printf(" Max dimension size of a grid size (x,y,z): (%d, %d, %d)\n",
deviceProp.maxGridSize[0], deviceProp.maxGridSize[1],
deviceProp.maxGridSize[2]);
printf(" Maximum memory pitch: %lu bytes\n",
deviceProp.memPitch);
printf(" Texture alignment: %lu bytes\n",
deviceProp.textureAlignment);
printf(
" Concurrent copy and kernel execution: %s with %d copy "
"engine(s)\n",
(deviceProp.deviceOverlap ? "Yes" : "No"), deviceProp.asyncEngineCount);
printf(" Run time limit on kernels: %s\n",
deviceProp.kernelExecTimeoutEnabled ? "Yes" : "No");
printf(" Integrated GPU sharing Host Memory: %s\n",
deviceProp.integrated ? "Yes" : "No");
printf(" Support host page-locked memory mapping: %s\n",
deviceProp.canMapHostMemory ? "Yes" : "No");
printf(" Alignment requirement for Surfaces: %s\n",
deviceProp.surfaceAlignment ? "Yes" : "No");
printf(" Device has ECC support: %s\n",
deviceProp.ECCEnabled ? "Enabled" : "Disabled");
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
printf(" CUDA Device Driver Mode (TCC or WDDM): %s\n",
deviceProp.tccDriver ? "TCC (Tesla Compute Cluster Driver)"
: "WDDM (Windows Display Driver Model)");
#endif
printf(" Device supports Unified Addressing (UVA): %s\n",
deviceProp.unifiedAddressing ? "Yes" : "No");
printf(" Device supports Compute Preemption: %s\n",
deviceProp.computePreemptionSupported ? "Yes" : "No");
printf(" Supports Cooperative Kernel Launch: %s\n",
deviceProp.cooperativeLaunch ? "Yes" : "No");
printf(" Supports MultiDevice Co-op Kernel Launch: %s\n",
deviceProp.cooperativeMultiDeviceLaunch ? "Yes" : "No");
printf(" Device PCI Domain ID / Bus ID / location ID: %d / %d / %d\n",
deviceProp.pciDomainID, deviceProp.pciBusID, deviceProp.pciDeviceID);
const char *sComputeMode[] = {
"Default (multiple host threads can use ::cudaSetDevice() with device "
"simultaneously)",
"Exclusive (only one host thread in one process is able to use "
"::cudaSetDevice() with this device)",
"Prohibited (no host thread can use ::cudaSetDevice() with this "
"device)",
"Exclusive Process (many threads in one process is able to use "
"::cudaSetDevice() with this device)",
"Unknown",
NULL};
printf(" Compute Mode:\n");
printf(" < %s >\n", sComputeMode[deviceProp.computeMode]);
}
// If there are 2 or more GPUs, query to determine whether RDMA is supported
if (deviceCount >= 2) {
cudaDeviceProp prop[64];
int gpuid[64]; // we want to find the first two GPUs that can support P2P
int gpu_p2p_count = 0;
for (int i = 0; i < deviceCount; i++) {
checkCudaErrors(cudaGetDeviceProperties(&prop[i], i));
// Only boards based on Fermi or later can support P2P
if ((prop[i].major >= 2)
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
// on Windows (64-bit), the Tesla Compute Cluster driver for windows
// must be enabled to support this
&& prop[i].tccDriver
#endif
) {
// This is an array of P2P capable GPUs
gpuid[gpu_p2p_count++] = i;
}
}
// Show all the combinations of support P2P GPUs
int can_access_peer;
if (gpu_p2p_count >= 2) {
for (int i = 0; i < gpu_p2p_count; i++) {
for (int j = 0; j < gpu_p2p_count; j++) {
if (gpuid[i] == gpuid[j]) {
continue;
}
checkCudaErrors(
cudaDeviceCanAccessPeer(&can_access_peer, gpuid[i], gpuid[j]));
printf("> Peer access from %s (GPU%d) -> %s (GPU%d) : %s\n",
prop[gpuid[i]].name, gpuid[i], prop[gpuid[j]].name, gpuid[j],
can_access_peer ? "Yes" : "No");
}
}
}
}
// csv masterlog info
// *****************************
// exe and CUDA driver name
printf("\n");
std::string sProfileString = "deviceQuery, CUDA Driver = CUDART";
char cTemp[16];
// driver version
sProfileString += ", CUDA Driver Version = ";
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 10, "%d.%d", driverVersion/1000, (driverVersion%100)/10);
#else
snprintf(cTemp, sizeof(cTemp), "%d.%d", driverVersion / 1000,
(driverVersion % 100) / 10);
#endif
sProfileString += cTemp;
// Runtime version
sProfileString += ", CUDA Runtime Version = ";
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 10, "%d.%d", runtimeVersion/1000, (runtimeVersion%100)/10);
#else
snprintf(cTemp, sizeof(cTemp), "%d.%d", runtimeVersion / 1000,
(runtimeVersion % 100) / 10);
#endif
sProfileString += cTemp;
// Device count
sProfileString += ", NumDevs = ";
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(cTemp, 10, "%d", deviceCount);
#else
snprintf(cTemp, sizeof(cTemp), "%d", deviceCount);
#endif
sProfileString += cTemp;
sProfileString += "\n";
printf("%s", sProfileString.c_str());
printf("Result = PASS\n");
// finish
exit(EXIT_SUCCESS);
}