mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-24 22:09:16 +08:00
373 lines
18 KiB
Plaintext
373 lines
18 KiB
Plaintext
|
/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include <iostream>
|
||
|
|
||
|
#include <cuda_runtime.h>
|
||
|
#include "cuda_consumer.h"
|
||
|
#include <helper_image.h>
|
||
|
#include "nvmedia_image_nvscibuf.h"
|
||
|
#include "nvmedia_utils/cmdline.h"
|
||
|
|
||
|
// Enable this to 1 if require cuda processed output to ppm file.
|
||
|
#define WRITE_OUTPUT_IMAGE 0
|
||
|
|
||
|
|
||
|
#define checkNvSciErrors(call) \
|
||
|
do { \
|
||
|
NvSciError _status = call; \
|
||
|
if (NvSciError_Success != _status) { \
|
||
|
printf( \
|
||
|
"NVSCI call in file '%s' in line %i returned" \
|
||
|
" %d, expected %d\n", \
|
||
|
__FILE__, __LINE__, _status, NvSciError_Success); \
|
||
|
fflush(stdout); \
|
||
|
exit(EXIT_FAILURE); \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
__global__ static void yuvToGrayscale(cudaSurfaceObject_t surfaceObject, unsigned int *dstImage, int32_t imageWidth, int32_t imageHeight)
|
||
|
{
|
||
|
size_t x = blockIdx.x*blockDim.x + threadIdx.x;
|
||
|
size_t y = blockIdx.y*blockDim.y + threadIdx.y;
|
||
|
|
||
|
uchar4* dstImageUchar4 = (uchar4*)dstImage;
|
||
|
for ( ; x < imageWidth && y < imageHeight; x += gridDim.x*blockDim.x, y += gridDim.y*blockDim.y)
|
||
|
{
|
||
|
int colInBytes = x * sizeof(unsigned char);
|
||
|
unsigned char luma = surf2Dread<unsigned char>(surfaceObject, colInBytes, y);
|
||
|
uchar4 grayscalePix = make_uchar4(luma, luma, luma, 0);
|
||
|
|
||
|
dstImageUchar4[y*imageWidth + x] = grayscalePix;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void cudaImportNvSciSync(cudaExternalSemaphore_t &extSem, NvSciSyncObj &syncObj)
|
||
|
{
|
||
|
cudaExternalSemaphoreHandleDesc extSemDesc;
|
||
|
memset(&extSemDesc, 0, sizeof(extSemDesc));
|
||
|
extSemDesc.type = cudaExternalSemaphoreHandleTypeNvSciSync;
|
||
|
extSemDesc.handle.nvSciSyncObj = (void *)syncObj;
|
||
|
|
||
|
checkCudaErrors(cudaImportExternalSemaphore(&extSem, &extSemDesc));
|
||
|
}
|
||
|
|
||
|
static void waitExternalSemaphore(cudaExternalSemaphore_t &waitSem, NvSciSyncFence *fence,
|
||
|
cudaStream_t stream) {
|
||
|
cudaExternalSemaphoreWaitParams waitParams;
|
||
|
memset(&waitParams, 0, sizeof(waitParams));
|
||
|
// For cross-process signaler-waiter applications need to use NvSciIpc
|
||
|
// and NvSciSync[Export|Import] utilities to share the NvSciSyncFence
|
||
|
// across process. This step is optional in single-process.
|
||
|
waitParams.params.nvSciSync.fence = (void *)fence;
|
||
|
waitParams.flags = 0;
|
||
|
|
||
|
checkCudaErrors(cudaWaitExternalSemaphoresAsync(&waitSem, &waitParams, 1, stream));
|
||
|
}
|
||
|
|
||
|
static void signalExternalSemaphore(cudaExternalSemaphore_t &signalSem, NvSciSyncFence *fence,
|
||
|
cudaStream_t stream) {
|
||
|
cudaExternalSemaphoreSignalParams signalParams;
|
||
|
memset(&signalParams, 0, sizeof(signalParams));
|
||
|
// For cross-process signaler-waiter applications need to use NvSciIpc
|
||
|
// and NvSciSync[Export|Import] utilities to share the NvSciSyncFence
|
||
|
// across process. This step is optional in single-process.
|
||
|
signalParams.params.nvSciSync.fence = (void *)fence;
|
||
|
signalParams.flags = 0;
|
||
|
|
||
|
checkCudaErrors(cudaSignalExternalSemaphoresAsync(&signalSem, &signalParams,
|
||
|
1, stream));
|
||
|
}
|
||
|
|
||
|
|
||
|
static void yuvToGrayscaleCudaKernel(cudaExternalResInterop& cudaExtResObj, int32_t imageWidth, int32_t imageHeight)
|
||
|
{
|
||
|
#if WRITE_OUTPUT_IMAGE
|
||
|
unsigned int *h_dstImage;
|
||
|
checkCudaErrors(cudaMallocHost(&h_dstImage, sizeof(unsigned int)*imageHeight*imageWidth));
|
||
|
#endif
|
||
|
dim3 block(16, 16, 1);
|
||
|
dim3 grid((imageWidth/block.x)+1, (imageHeight/block.y)+1, 1);
|
||
|
|
||
|
yuvToGrayscale<<<grid, block, 0, cudaExtResObj.stream>>>(cudaExtResObj.cudaSurfaceNvmediaBuf[0], cudaExtResObj.d_outputImage, imageWidth, imageHeight);
|
||
|
|
||
|
#if WRITE_OUTPUT_IMAGE
|
||
|
checkCudaErrors(cudaMemcpyAsync(h_dstImage, cudaExtResObj.d_outputImage, sizeof(unsigned int)*imageHeight*imageWidth, cudaMemcpyDeviceToHost, cudaExtResObj.stream));
|
||
|
checkCudaErrors(cudaStreamSynchronize(cudaExtResObj.stream));
|
||
|
char outputFilename[1024];
|
||
|
std::string image_filename = "Grayscale";
|
||
|
strcpy(outputFilename, image_filename.c_str());
|
||
|
strcpy(outputFilename + image_filename.length(), "_nvsci_out.ppm");
|
||
|
sdkSavePPM4ub(outputFilename, (unsigned char *)h_dstImage, imageWidth, imageHeight);
|
||
|
printf("Wrote '%s'\n", outputFilename);
|
||
|
checkCudaErrors(cudaFreeHost(h_dstImage));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void cudaImportNvSciImage(cudaExternalResInterop &cudaExtResObj, NvSciBufObj& inputBufObj)
|
||
|
{
|
||
|
NvSciBufModule module = NULL;
|
||
|
NvSciBufAttrList attrlist = NULL;
|
||
|
NvSciBufAttrKeyValuePair pairArrayOut[10];
|
||
|
|
||
|
checkNvSciErrors(NvSciBufModuleOpen(&module));
|
||
|
checkNvSciErrors(NvSciBufAttrListCreate(module, &attrlist));
|
||
|
checkNvSciErrors(NvSciBufObjGetAttrList(inputBufObj, &attrlist));
|
||
|
|
||
|
memset(pairArrayOut, 0, sizeof(NvSciBufAttrKeyValuePair) * 10);
|
||
|
|
||
|
int numAttrs = 0;
|
||
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_Size;
|
||
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneChannelCount;
|
||
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneCount;
|
||
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneWidth;
|
||
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneHeight;
|
||
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_Layout;
|
||
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneBitsPerPixel;
|
||
|
|
||
|
checkNvSciErrors(NvSciBufAttrListGetAttrs(attrlist, pairArrayOut, numAttrs));
|
||
|
|
||
|
uint64_t size = *(uint64_t *)pairArrayOut[0].value;
|
||
|
uint8_t channelCount = *(uint8_t *)pairArrayOut[1].value;
|
||
|
cudaExtResObj.planeCount = *(int32_t *)pairArrayOut[2].value;
|
||
|
cudaExtResObj.imageWidth = (int32_t*) malloc(sizeof(int32_t)*cudaExtResObj.planeCount);
|
||
|
cudaExtResObj.imageHeight = (int32_t*) malloc(sizeof(int32_t)*cudaExtResObj.planeCount);
|
||
|
|
||
|
memcpy(cudaExtResObj.imageWidth, (int32_t *)pairArrayOut[3].value, cudaExtResObj.planeCount * sizeof(int32_t));
|
||
|
memcpy(cudaExtResObj.imageHeight, (int32_t *)pairArrayOut[4].value, cudaExtResObj.planeCount * sizeof(int32_t));
|
||
|
|
||
|
NvSciBufAttrValImageLayoutType layout = *(NvSciBufAttrValImageLayoutType *)pairArrayOut[5].value;
|
||
|
uint32_t bitsPerPixel = *(uint32_t*)pairArrayOut[6].value;
|
||
|
|
||
|
if (layout != NvSciBufImage_BlockLinearType) {
|
||
|
printf("Image layout is not block linear.. waiving execution\n");
|
||
|
exit(EXIT_WAIVED);
|
||
|
}
|
||
|
|
||
|
cudaExternalMemoryHandleDesc memHandleDesc;
|
||
|
memset(&memHandleDesc, 0, sizeof(memHandleDesc));
|
||
|
memHandleDesc.type = cudaExternalMemoryHandleTypeNvSciBuf;
|
||
|
memHandleDesc.handle.nvSciBufObject = inputBufObj;
|
||
|
memHandleDesc.size = size;
|
||
|
checkCudaErrors(cudaImportExternalMemory(&cudaExtResObj.extMemImageBuf, &memHandleDesc));
|
||
|
|
||
|
cudaExtResObj.d_mipmapArray = (cudaMipmappedArray_t*) malloc(sizeof(cudaMipmappedArray_t) * cudaExtResObj.planeCount);
|
||
|
|
||
|
for (int i = 0; i < cudaExtResObj.planeCount; i++) {
|
||
|
cudaExtent extent = {};
|
||
|
memset(&extent, 0, sizeof(extent));
|
||
|
extent.width = cudaExtResObj.imageWidth[i];
|
||
|
extent.height = cudaExtResObj.imageHeight[i];
|
||
|
extent.depth = 0;
|
||
|
cudaChannelFormatDesc desc;
|
||
|
switch (channelCount) {
|
||
|
case 1:
|
||
|
default:
|
||
|
desc = cudaCreateChannelDesc(bitsPerPixel, 0, 0, 0, cudaChannelFormatKindUnsigned);
|
||
|
break;
|
||
|
case 2:
|
||
|
desc = cudaCreateChannelDesc(bitsPerPixel, bitsPerPixel, 0, 0, cudaChannelFormatKindUnsigned);
|
||
|
break;
|
||
|
case 3:
|
||
|
desc = cudaCreateChannelDesc(bitsPerPixel, bitsPerPixel, bitsPerPixel, 0, cudaChannelFormatKindUnsigned);
|
||
|
break;
|
||
|
case 4:
|
||
|
desc = cudaCreateChannelDesc(bitsPerPixel, bitsPerPixel, bitsPerPixel, bitsPerPixel, cudaChannelFormatKindUnsigned);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
cudaExternalMemoryMipmappedArrayDesc mipmapDesc = {0};
|
||
|
mipmapDesc.offset = 0;
|
||
|
mipmapDesc.formatDesc = desc;
|
||
|
mipmapDesc.extent = extent;
|
||
|
mipmapDesc.flags = 0;
|
||
|
mipmapDesc.numLevels = 1;
|
||
|
checkCudaErrors(cudaExternalMemoryGetMappedMipmappedArray(&cudaExtResObj.d_mipmapArray[i], cudaExtResObj.extMemImageBuf, &mipmapDesc));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static cudaSurfaceObject_t createCudaSurface(cudaArray_t &d_mipLevelArray)
|
||
|
{
|
||
|
cudaResourceDesc resourceDesc;
|
||
|
memset(&resourceDesc, 0, sizeof(resourceDesc));
|
||
|
resourceDesc.resType = cudaResourceTypeArray;
|
||
|
resourceDesc.res.array.array = d_mipLevelArray;
|
||
|
|
||
|
cudaSurfaceObject_t surfaceObject;
|
||
|
checkCudaErrors(cudaCreateSurfaceObject(&surfaceObject, &resourceDesc));
|
||
|
return surfaceObject;
|
||
|
}
|
||
|
|
||
|
static cudaStream_t createCudaStream(int deviceId)
|
||
|
{
|
||
|
checkCudaErrors(cudaSetDevice(deviceId));
|
||
|
cudaStream_t stream;
|
||
|
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
|
||
|
return stream;
|
||
|
}
|
||
|
|
||
|
// CUDA setup buffers/synchronization objects for interop via NvSci API.
|
||
|
void setupCuda(cudaExternalResInterop& cudaExtResObj, NvSciBufObj& inputBufObj,
|
||
|
NvSciSyncObj &syncObj, NvSciSyncObj &cudaSignalerSyncObj, int deviceId)
|
||
|
{
|
||
|
checkCudaErrors(cudaSetDevice(deviceId));
|
||
|
cudaImportNvSciSync(cudaExtResObj.waitSem, syncObj);
|
||
|
cudaImportNvSciSync(cudaExtResObj.signalSem, cudaSignalerSyncObj);
|
||
|
|
||
|
cudaImportNvSciImage(cudaExtResObj, inputBufObj);
|
||
|
cudaExtResObj.d_mipLevelArray = (cudaArray_t *) malloc(sizeof(cudaArray_t) * cudaExtResObj.planeCount);
|
||
|
cudaExtResObj.cudaSurfaceNvmediaBuf = (cudaSurfaceObject_t *) malloc(sizeof(cudaSurfaceObject_t) * cudaExtResObj.planeCount);
|
||
|
|
||
|
for (int i = 0; i < cudaExtResObj.planeCount; ++i) {
|
||
|
uint32_t mipLevelId = 0;
|
||
|
checkCudaErrors(cudaGetMipmappedArrayLevel(&cudaExtResObj.d_mipLevelArray[i], cudaExtResObj.d_mipmapArray[i], mipLevelId));
|
||
|
cudaExtResObj.cudaSurfaceNvmediaBuf[i] = createCudaSurface(cudaExtResObj.d_mipLevelArray[i]);
|
||
|
}
|
||
|
|
||
|
cudaExtResObj.stream = createCudaStream(deviceId);
|
||
|
checkCudaErrors(cudaMalloc(&cudaExtResObj.d_outputImage, sizeof(unsigned int) * cudaExtResObj.imageWidth[0] * cudaExtResObj.imageHeight[0]));
|
||
|
}
|
||
|
|
||
|
// CUDA clean up buffers used **with** NvSci API.
|
||
|
void cleanupCuda(cudaExternalResInterop& cudaExtResObj)
|
||
|
{
|
||
|
for (int i=0; i < cudaExtResObj.planeCount; i++) {
|
||
|
checkCudaErrors(cudaDestroySurfaceObject(cudaExtResObj.cudaSurfaceNvmediaBuf[i]));
|
||
|
checkCudaErrors(cudaFreeMipmappedArray(cudaExtResObj.d_mipmapArray[i]));
|
||
|
}
|
||
|
free(cudaExtResObj.d_mipmapArray);
|
||
|
free(cudaExtResObj.d_mipLevelArray);
|
||
|
free(cudaExtResObj.cudaSurfaceNvmediaBuf);
|
||
|
free(cudaExtResObj.imageWidth);
|
||
|
free(cudaExtResObj.imageHeight);
|
||
|
checkCudaErrors(cudaDestroyExternalSemaphore(cudaExtResObj.waitSem));
|
||
|
checkCudaErrors(cudaDestroyExternalSemaphore(cudaExtResObj.signalSem));
|
||
|
checkCudaErrors(cudaDestroyExternalMemory(cudaExtResObj.extMemImageBuf));
|
||
|
checkCudaErrors(cudaStreamDestroy(cudaExtResObj.stream));
|
||
|
checkCudaErrors(cudaFree(cudaExtResObj.d_outputImage));
|
||
|
}
|
||
|
|
||
|
void runCudaOperation(cudaExternalResInterop& cudaExtResObj, NvSciSyncFence *cudaWaitFence,
|
||
|
NvSciSyncFence *cudaSignalFence, int deviceId, int iterations)
|
||
|
{
|
||
|
checkCudaErrors(cudaSetDevice(deviceId));
|
||
|
static int64_t launch = 0;
|
||
|
|
||
|
waitExternalSemaphore(cudaExtResObj.waitSem, cudaWaitFence, cudaExtResObj.stream);
|
||
|
|
||
|
// run cuda kernel over surface object of the LUMA surface part to extract grayscale.
|
||
|
yuvToGrayscaleCudaKernel(cudaExtResObj, cudaExtResObj.imageWidth[0], cudaExtResObj.imageHeight[0]);
|
||
|
|
||
|
// signal fence till the second last iterations for NvMedia2DBlit to wait for cuda signal
|
||
|
// and for final iteration as there is no corresponding NvMedia operation pending
|
||
|
// therefore we end with cudaStreamSynchronize()
|
||
|
if (launch < iterations-1) {
|
||
|
signalExternalSemaphore(cudaExtResObj.signalSem, cudaSignalFence, cudaExtResObj.stream);
|
||
|
}
|
||
|
else {
|
||
|
checkCudaErrors(cudaStreamSynchronize(cudaExtResObj.stream));
|
||
|
}
|
||
|
launch++;
|
||
|
}
|
||
|
|
||
|
// CUDA imports and operates on NvSci buffer/synchronization objects
|
||
|
void setupCuda(Blit2DTest *ctx, cudaResources &cudaResObj, int deviceId)
|
||
|
{
|
||
|
checkCudaErrors(cudaSetDevice(deviceId));
|
||
|
cudaResObj.d_yuvArray = (cudaArray_t *) malloc(sizeof(cudaArray_t) * ctx->numSurfaces);
|
||
|
cudaResObj.cudaSurfaceNvmediaBuf = (cudaSurfaceObject_t*) malloc(sizeof(cudaSurfaceObject_t) * ctx->numSurfaces);
|
||
|
cudaChannelFormatDesc channelDesc;
|
||
|
switch (ctx->bytesPerPixel) {
|
||
|
case 1:
|
||
|
default:
|
||
|
channelDesc = cudaCreateChannelDesc(8, 0, 0, 0, cudaChannelFormatKindUnsigned);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
for(int k = 0; k < ctx->numSurfaces; k++) {
|
||
|
checkCudaErrors(cudaMallocArray(&cudaResObj.d_yuvArray[k], &channelDesc, ctx->widthSurface * ctx->xScalePtr[k] * ctx->bytesPerPixel,
|
||
|
ctx->heightSurface * ctx->yScalePtr[k]));
|
||
|
cudaResObj.cudaSurfaceNvmediaBuf[k] = createCudaSurface(cudaResObj.d_yuvArray[k]);
|
||
|
}
|
||
|
checkCudaErrors(cudaMalloc(&cudaResObj.d_outputImage, sizeof(unsigned int) * ctx->widthSurface * ctx->heightSurface));
|
||
|
|
||
|
cudaResObj.stream = createCudaStream(deviceId);
|
||
|
}
|
||
|
|
||
|
// CUDA clean up buffers used **without** NvSci API.
|
||
|
void cleanupCuda(Blit2DTest *ctx, cudaResources &cudaResObj)
|
||
|
{
|
||
|
for(int k = 0; k < ctx->numSurfaces; k++) {
|
||
|
checkCudaErrors(cudaDestroySurfaceObject(cudaResObj.cudaSurfaceNvmediaBuf[k]));
|
||
|
checkCudaErrors(cudaFreeArray(cudaResObj.d_yuvArray[k]));
|
||
|
}
|
||
|
|
||
|
free(cudaResObj.cudaSurfaceNvmediaBuf);
|
||
|
|
||
|
checkCudaErrors(cudaStreamDestroy(cudaResObj.stream));
|
||
|
checkCudaErrors(cudaFree(cudaResObj.d_outputImage));
|
||
|
}
|
||
|
|
||
|
static void yuvToGrayscaleCudaKernelNonNvSci(cudaResources &cudaResObj, int deviceId, int32_t imageWidth, int32_t imageHeight)
|
||
|
{
|
||
|
#if WRITE_OUTPUT_IMAGE
|
||
|
unsigned int *h_dstImage;
|
||
|
checkCudaErrors(cudaMallocHost(&h_dstImage, sizeof(unsigned int)*imageHeight*imageWidth));
|
||
|
#endif
|
||
|
dim3 block(16, 16, 1);
|
||
|
dim3 grid((imageWidth/block.x)+1, (imageHeight/block.y)+1, 1);
|
||
|
|
||
|
yuvToGrayscale<<<grid, block, 0, cudaResObj.stream>>>(cudaResObj.cudaSurfaceNvmediaBuf[0], cudaResObj.d_outputImage, imageWidth, imageHeight);
|
||
|
|
||
|
#if WRITE_OUTPUT_IMAGE
|
||
|
checkCudaErrors(cudaMemcpyAsync(h_dstImage, cudaResObj.d_outputImage, sizeof(unsigned int)*imageHeight*imageWidth, cudaMemcpyDeviceToHost, cudaResObj.stream));
|
||
|
checkCudaErrors(cudaStreamSynchronize(cudaResObj.stream));
|
||
|
char outputFilename[1024];
|
||
|
std::string image_filename = "Grayscale";
|
||
|
strcpy(outputFilename, image_filename.c_str());
|
||
|
strcpy(outputFilename + image_filename.length(), "_non-nvsci_out.ppm");
|
||
|
sdkSavePPM4ub(outputFilename, (unsigned char *)h_dstImage, imageWidth, imageHeight);
|
||
|
printf("Wrote '%s'\n", outputFilename);
|
||
|
checkCudaErrors(cudaFreeHost(h_dstImage));
|
||
|
#else
|
||
|
checkCudaErrors(cudaStreamSynchronize(cudaResObj.stream));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// CUDA operates **without** NvSci APIs buffer/synchronization objects.
|
||
|
void runCudaOperation(Blit2DTest *ctx, cudaResources &cudaResObj, int deviceId)
|
||
|
{
|
||
|
for(int k = 0; k < ctx->numSurfaces; k++) {
|
||
|
checkCudaErrors(cudaMemcpy2DToArray(cudaResObj.d_yuvArray[k], 0, 0, ctx->dstBuff[k],
|
||
|
ctx->widthSurface * ctx->xScalePtr[k] * ctx->bytesPerPixel,
|
||
|
ctx->widthSurface * ctx->xScalePtr[k] * ctx->bytesPerPixel,
|
||
|
ctx->heightSurface * ctx->yScalePtr[k], cudaMemcpyHostToDevice));
|
||
|
}
|
||
|
// run cuda kernel over surface object of the LUMA surface part to extract grayscale.
|
||
|
yuvToGrayscaleCudaKernelNonNvSci(cudaResObj, deviceId, ctx->widthSurface, ctx->heightSurface);
|
||
|
}
|