mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-12-01 14:29:16 +08:00
62 lines
2.6 KiB
C
62 lines
2.6 KiB
C
|
/*
|
||
|
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
|
||
|
*
|
||
|
* Please refer to the NVIDIA end user license agreement (EULA) associated
|
||
|
* with this source code for terms and conditions that govern your use of
|
||
|
* this software. Any use, reproduction, disclosure, or distribution of
|
||
|
* this software and related documentation outside the terms of the EULA
|
||
|
* is strictly prohibited.
|
||
|
*
|
||
|
*/
|
||
|
#ifndef __STABLEFLUIDS_KERNELS_CUH_
|
||
|
#define __STABLEFLUIDS_KERNELS_CUH_
|
||
|
|
||
|
// Vector data type used to velocity and force fields
|
||
|
typedef float2 cData;
|
||
|
|
||
|
void setupTexture(int x, int y);
|
||
|
void updateTexture(cData *data, size_t w, size_t h, size_t pitch);
|
||
|
void deleteTexture(void);
|
||
|
|
||
|
// This method adds constant force vectors to the velocity field
|
||
|
// stored in 'v' according to v(x,t+1) = v(x,t) + dt * f.
|
||
|
__global__ void
|
||
|
addForces_k(cData *v, int dx, int dy, int spx, int spy, float fx, float fy, int r, size_t pitch);
|
||
|
|
||
|
// This method performs the velocity advection step, where we
|
||
|
// trace velocity vectors back in time to update each grid cell.
|
||
|
// That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear
|
||
|
// interpolation in the velocity space.
|
||
|
__global__ void
|
||
|
advectVelocity_k(cData *v, float *vx, float *vy,
|
||
|
int dx, int pdx, int dy, float dt, int lb, cudaTextureObject_t tex);
|
||
|
|
||
|
// This method performs velocity diffusion and forces mass conservation
|
||
|
// in the frequency domain. The inputs 'vx' and 'vy' are complex-valued
|
||
|
// arrays holding the Fourier coefficients of the velocity field in
|
||
|
// X and Y. Diffusion in this space takes a simple form described as:
|
||
|
// v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity,
|
||
|
// and k is the wavenumber. The projection step forces the Fourier
|
||
|
// velocity vectors to be orthogonal to the wave wave vectors for each
|
||
|
// wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2.
|
||
|
__global__ void
|
||
|
diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt,
|
||
|
float visc, int lb);
|
||
|
|
||
|
// This method updates the velocity field 'v' using the two complex
|
||
|
// arrays from the previous step: 'vx' and 'vy'. Here we scale the
|
||
|
// real components by 1/(dx*dy) to account for an unnormalized FFT.
|
||
|
__global__ void
|
||
|
updateVelocity_k(cData *v, float *vx, float *vy,
|
||
|
int dx, int pdx, int dy, int lb, size_t pitch);
|
||
|
|
||
|
// This method updates the particles by moving particle positions
|
||
|
// according to the velocity field and time step. That is, for each
|
||
|
// particle: p(t+1) = p(t) + dt * v(p(t)).
|
||
|
__global__ void
|
||
|
advectParticles_k(cData *part, cData *v, int dx, int dy,
|
||
|
float dt, int lb, size_t pitch);
|
||
|
|
||
|
#endif
|
||
|
|