2022-01-13 14:05:24 +08:00
|
|
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2021-10-21 19:04:49 +08:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* CUDA particle system kernel code.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _PARTICLES_KERNEL_H_
|
|
|
|
#define _PARTICLES_KERNEL_H_
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <cooperative_groups.h>
|
|
|
|
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
#include "helper_math.h"
|
|
|
|
#include "math_constants.h"
|
|
|
|
#include "particles_kernel.cuh"
|
|
|
|
|
|
|
|
// simulation parameters in constant memory
|
|
|
|
__constant__ SimParams params;
|
|
|
|
|
|
|
|
struct integrate_functor {
|
|
|
|
float deltaTime;
|
|
|
|
|
|
|
|
__host__ __device__ integrate_functor(float delta_time)
|
|
|
|
: deltaTime(delta_time) {}
|
|
|
|
|
|
|
|
template <typename Tuple>
|
|
|
|
__device__ void operator()(Tuple t) {
|
|
|
|
volatile float4 posData = thrust::get<0>(t);
|
|
|
|
volatile float4 velData = thrust::get<1>(t);
|
|
|
|
float3 pos = make_float3(posData.x, posData.y, posData.z);
|
|
|
|
float3 vel = make_float3(velData.x, velData.y, velData.z);
|
|
|
|
|
|
|
|
vel += params.gravity * deltaTime;
|
|
|
|
vel *= params.globalDamping;
|
|
|
|
|
|
|
|
// new position = old position + velocity * deltaTime
|
|
|
|
pos += vel * deltaTime;
|
|
|
|
|
|
|
|
// set this to zero to disable collisions with cube sides
|
|
|
|
#if 1
|
|
|
|
|
|
|
|
if (pos.x > 1.0f - params.particleRadius) {
|
|
|
|
pos.x = 1.0f - params.particleRadius;
|
|
|
|
vel.x *= params.boundaryDamping;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pos.x < -1.0f + params.particleRadius) {
|
|
|
|
pos.x = -1.0f + params.particleRadius;
|
|
|
|
vel.x *= params.boundaryDamping;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pos.y > 1.0f - params.particleRadius) {
|
|
|
|
pos.y = 1.0f - params.particleRadius;
|
|
|
|
vel.y *= params.boundaryDamping;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pos.z > 1.0f - params.particleRadius) {
|
|
|
|
pos.z = 1.0f - params.particleRadius;
|
|
|
|
vel.z *= params.boundaryDamping;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pos.z < -1.0f + params.particleRadius) {
|
|
|
|
pos.z = -1.0f + params.particleRadius;
|
|
|
|
vel.z *= params.boundaryDamping;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (pos.y < -1.0f + params.particleRadius) {
|
|
|
|
pos.y = -1.0f + params.particleRadius;
|
|
|
|
vel.y *= params.boundaryDamping;
|
|
|
|
}
|
|
|
|
|
|
|
|
// store new position and velocity
|
|
|
|
thrust::get<0>(t) = make_float4(pos, posData.w);
|
|
|
|
thrust::get<1>(t) = make_float4(vel, velData.w);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// calculate position in uniform grid
|
|
|
|
__device__ int3 calcGridPos(float3 p) {
|
|
|
|
int3 gridPos;
|
|
|
|
gridPos.x = floorf((p.x - params.worldOrigin.x) / params.cellSize.x);
|
|
|
|
gridPos.y = floorf((p.y - params.worldOrigin.y) / params.cellSize.y);
|
|
|
|
gridPos.z = floorf((p.z - params.worldOrigin.z) / params.cellSize.z);
|
|
|
|
return gridPos;
|
|
|
|
}
|
|
|
|
|
|
|
|
// calculate address in grid from position (clamping to edges)
|
|
|
|
__device__ uint calcGridHash(int3 gridPos) {
|
|
|
|
gridPos.x = gridPos.x &
|
|
|
|
(params.gridSize.x - 1); // wrap grid, assumes size is power of 2
|
|
|
|
gridPos.y = gridPos.y & (params.gridSize.y - 1);
|
|
|
|
gridPos.z = gridPos.z & (params.gridSize.z - 1);
|
|
|
|
return __umul24(__umul24(gridPos.z, params.gridSize.y), params.gridSize.x) +
|
|
|
|
__umul24(gridPos.y, params.gridSize.x) + gridPos.x;
|
|
|
|
}
|
|
|
|
|
|
|
|
// calculate grid hash value for each particle
|
|
|
|
__global__ void calcHashD(uint *gridParticleHash, // output
|
|
|
|
uint *gridParticleIndex, // output
|
|
|
|
float4 *pos, // input: positions
|
|
|
|
uint numParticles) {
|
|
|
|
uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
|
|
|
|
|
|
|
|
if (index >= numParticles) return;
|
|
|
|
|
|
|
|
volatile float4 p = pos[index];
|
|
|
|
|
|
|
|
// get address in grid
|
|
|
|
int3 gridPos = calcGridPos(make_float3(p.x, p.y, p.z));
|
|
|
|
uint hash = calcGridHash(gridPos);
|
|
|
|
|
|
|
|
// store grid hash and particle index
|
|
|
|
gridParticleHash[index] = hash;
|
|
|
|
gridParticleIndex[index] = index;
|
|
|
|
}
|
|
|
|
|
|
|
|
// rearrange particle data into sorted order, and find the start of each cell
|
|
|
|
// in the sorted hash array
|
|
|
|
__global__ void reorderDataAndFindCellStartD(
|
|
|
|
uint *cellStart, // output: cell start index
|
|
|
|
uint *cellEnd, // output: cell end index
|
|
|
|
float4 *sortedPos, // output: sorted positions
|
|
|
|
float4 *sortedVel, // output: sorted velocities
|
|
|
|
uint *gridParticleHash, // input: sorted grid hashes
|
|
|
|
uint *gridParticleIndex, // input: sorted particle indices
|
|
|
|
float4 *oldPos, // input: sorted position array
|
|
|
|
float4 *oldVel, // input: sorted velocity array
|
|
|
|
uint numParticles) {
|
|
|
|
// Handle to thread block group
|
|
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
|
|
extern __shared__ uint sharedHash[]; // blockSize + 1 elements
|
|
|
|
uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
|
|
|
|
|
|
|
|
uint hash;
|
|
|
|
|
|
|
|
// handle case when no. of particles not multiple of block size
|
|
|
|
if (index < numParticles) {
|
|
|
|
hash = gridParticleHash[index];
|
|
|
|
|
|
|
|
// Load hash data into shared memory so that we can look
|
|
|
|
// at neighboring particle's hash value without loading
|
|
|
|
// two hash values per thread
|
|
|
|
sharedHash[threadIdx.x + 1] = hash;
|
|
|
|
|
|
|
|
if (index > 0 && threadIdx.x == 0) {
|
|
|
|
// first thread in block must load neighbor particle hash
|
|
|
|
sharedHash[0] = gridParticleHash[index - 1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cg::sync(cta);
|
|
|
|
|
|
|
|
if (index < numParticles) {
|
|
|
|
// If this particle has a different cell index to the previous
|
|
|
|
// particle then it must be the first particle in the cell,
|
|
|
|
// so store the index of this particle in the cell.
|
|
|
|
// As it isn't the first particle, it must also be the cell end of
|
|
|
|
// the previous particle's cell
|
|
|
|
|
|
|
|
if (index == 0 || hash != sharedHash[threadIdx.x]) {
|
|
|
|
cellStart[hash] = index;
|
|
|
|
|
|
|
|
if (index > 0) cellEnd[sharedHash[threadIdx.x]] = index;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (index == numParticles - 1) {
|
|
|
|
cellEnd[hash] = index + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now use the sorted index to reorder the pos and vel data
|
|
|
|
uint sortedIndex = gridParticleIndex[index];
|
|
|
|
float4 pos = oldPos[sortedIndex];
|
|
|
|
float4 vel = oldVel[sortedIndex];
|
|
|
|
|
|
|
|
sortedPos[index] = pos;
|
|
|
|
sortedVel[index] = vel;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// collide two spheres using DEM method
|
|
|
|
__device__ float3 collideSpheres(float3 posA, float3 posB, float3 velA,
|
|
|
|
float3 velB, float radiusA, float radiusB,
|
|
|
|
float attraction) {
|
|
|
|
// calculate relative position
|
|
|
|
float3 relPos = posB - posA;
|
|
|
|
|
|
|
|
float dist = length(relPos);
|
|
|
|
float collideDist = radiusA + radiusB;
|
|
|
|
|
|
|
|
float3 force = make_float3(0.0f);
|
|
|
|
|
|
|
|
if (dist < collideDist) {
|
|
|
|
float3 norm = relPos / dist;
|
|
|
|
|
|
|
|
// relative velocity
|
|
|
|
float3 relVel = velB - velA;
|
|
|
|
|
|
|
|
// relative tangential velocity
|
|
|
|
float3 tanVel = relVel - (dot(relVel, norm) * norm);
|
|
|
|
|
|
|
|
// spring force
|
|
|
|
force = -params.spring * (collideDist - dist) * norm;
|
|
|
|
// dashpot (damping) force
|
|
|
|
force += params.damping * relVel;
|
|
|
|
// tangential shear force
|
|
|
|
force += params.shear * tanVel;
|
|
|
|
// attraction
|
|
|
|
force += attraction * relPos;
|
|
|
|
}
|
|
|
|
|
|
|
|
return force;
|
|
|
|
}
|
|
|
|
|
|
|
|
// collide a particle against all other particles in a given cell
|
|
|
|
__device__ float3 collideCell(int3 gridPos, uint index, float3 pos, float3 vel,
|
|
|
|
float4 *oldPos, float4 *oldVel, uint *cellStart,
|
|
|
|
uint *cellEnd) {
|
|
|
|
uint gridHash = calcGridHash(gridPos);
|
|
|
|
|
|
|
|
// get start of bucket for this cell
|
|
|
|
uint startIndex = cellStart[gridHash];
|
|
|
|
|
|
|
|
float3 force = make_float3(0.0f);
|
|
|
|
|
|
|
|
if (startIndex != 0xffffffff) // cell is not empty
|
|
|
|
{
|
|
|
|
// iterate over particles in this cell
|
|
|
|
uint endIndex = cellEnd[gridHash];
|
|
|
|
|
|
|
|
for (uint j = startIndex; j < endIndex; j++) {
|
|
|
|
if (j != index) // check not colliding with self
|
|
|
|
{
|
|
|
|
float3 pos2 = make_float3(oldPos[j]);
|
|
|
|
float3 vel2 = make_float3(oldVel[j]);
|
|
|
|
|
|
|
|
// collide two spheres
|
|
|
|
force += collideSpheres(pos, pos2, vel, vel2, params.particleRadius,
|
|
|
|
params.particleRadius, params.attraction);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return force;
|
|
|
|
}
|
|
|
|
|
|
|
|
__global__ void collideD(
|
|
|
|
float4 *newVel, // output: new velocity
|
|
|
|
float4 *oldPos, // input: sorted positions
|
|
|
|
float4 *oldVel, // input: sorted velocities
|
|
|
|
uint *gridParticleIndex, // input: sorted particle indices
|
|
|
|
uint *cellStart, uint *cellEnd, uint numParticles) {
|
|
|
|
uint index = __mul24(blockIdx.x, blockDim.x) + threadIdx.x;
|
|
|
|
|
|
|
|
if (index >= numParticles) return;
|
|
|
|
|
|
|
|
// read particle data from sorted arrays
|
|
|
|
float3 pos = make_float3(oldPos[index]);
|
|
|
|
float3 vel = make_float3(oldVel[index]);
|
|
|
|
|
|
|
|
// get address in grid
|
|
|
|
int3 gridPos = calcGridPos(pos);
|
|
|
|
|
|
|
|
// examine neighbouring cells
|
|
|
|
float3 force = make_float3(0.0f);
|
|
|
|
|
|
|
|
for (int z = -1; z <= 1; z++) {
|
|
|
|
for (int y = -1; y <= 1; y++) {
|
|
|
|
for (int x = -1; x <= 1; x++) {
|
|
|
|
int3 neighbourPos = gridPos + make_int3(x, y, z);
|
|
|
|
force += collideCell(neighbourPos, index, pos, vel, oldPos, oldVel,
|
|
|
|
cellStart, cellEnd);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// collide with cursor sphere
|
|
|
|
force += collideSpheres(pos, params.colliderPos, vel,
|
|
|
|
make_float3(0.0f, 0.0f, 0.0f), params.particleRadius,
|
|
|
|
params.colliderRadius, 0.0f);
|
|
|
|
|
|
|
|
// write new velocity back to original unsorted location
|
|
|
|
uint originalIndex = gridParticleIndex[index];
|
|
|
|
newVel[originalIndex] = make_float4(vel + force, 0.0f);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|