cuda-samples/Samples/newdelete/newdelete.cu

310 lines
9.1 KiB
Plaintext
Raw Normal View History

2021-10-21 19:04:49 +08:00
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// This sample demonstrates dynamic global memory allocation through device C++
// new and delete operators and virtual function declarations available with
// CUDA 4.0.
#include <stdio.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
#include <stdlib.h>
#include <vector>
#include <algorithm>
const char *sSDKsample = "newdelete";
#include "container.hpp"
////////////////////////////////////////////////////////////////////////////////
//
// Kernels to allocate and instantiate Container objects on the device heap
//
////////////////////////////////////////////////////////////////////////////////
__global__ void vectorCreate(Container<int> **g_container, int max_size) {
// The Vector object and the data storage are allocated in device heap memory.
// This makes it persistent for the lifetime of the CUDA context.
// The grid has only one thread as only a single object instance is needed.
*g_container = new Vector<int>(max_size);
}
////////////////////////////////////////////////////////////////////////////////
//
// Kernels to fill and consume shared Container objects.
//
////////////////////////////////////////////////////////////////////////////////
__global__ void containerFill(Container<int> **g_container) {
// All threads of the grid cooperatively populate the shared Container object
// with data.
if (threadIdx.x == 0) {
(*g_container)->push(blockIdx.x);
}
}
__global__ void containerConsume(Container<int> **g_container, int *d_result) {
// All threads of the grid cooperatively consume the data from the shared
// Container object.
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int v;
if ((*g_container)->pop(v)) {
d_result[idx] = v;
} else {
d_result[idx] = -1;
}
}
////////////////////////////////////////////////////////////////////////////////
//
// Kernel to delete shared Container objects.
//
////////////////////////////////////////////////////////////////////////////////
__global__ void containerDelete(Container<int> **g_container) {
delete *g_container;
}
////////////////////////////////////////////////////////////////////////////////
//
// Kernels to using of placement new to put shared Vector objects and data in
// shared memory
//
////////////////////////////////////////////////////////////////////////////////
__global__ void placementNew(int *d_result) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ unsigned char __align__(8) s_buffer[sizeof(Vector<int>)];
__shared__ int __align__(8) s_data[1024];
__shared__ Vector<int> *s_vector;
// The first thread of the block initializes the shared Vector object.
// The placement new operator enables the Vector object and the data array top
// be placed in shared memory.
if (threadIdx.x == 0) {
s_vector = new (s_buffer) Vector<int>(1024, s_data);
}
cg::sync(cta);
if ((threadIdx.x & 1) == 0) {
s_vector->push(threadIdx.x >> 1);
}
// Need to sync as the vector implementation does not support concurrent
// push/pop operations.
cg::sync(cta);
int v;
if (s_vector->pop(v)) {
d_result[threadIdx.x] = v;
} else {
d_result[threadIdx.x] = -1;
}
// Note: deleting objects placed in shared memory is not necessary (lifetime
// of shared memory is that of the block)
}
struct ComplexType_t {
int a;
int b;
float c;
float d;
};
__global__ void complexVector(int *d_result) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ unsigned char __align__(8) s_buffer[sizeof(Vector<ComplexType_t>)];
__shared__ ComplexType_t __align__(8) s_data[1024];
__shared__ Vector<ComplexType_t> *s_vector;
// The first thread of the block initializes the shared Vector object.
// The placement new operator enables the Vector object and the data array top
// be placed in shared memory.
if (threadIdx.x == 0) {
s_vector = new (s_buffer) Vector<ComplexType_t>(1024, s_data);
}
cg::sync(cta);
if ((threadIdx.x & 1) == 0) {
ComplexType_t data;
data.a = threadIdx.x >> 1;
data.b = blockIdx.x;
data.c = threadIdx.x / (float)(blockDim.x);
data.d = blockIdx.x / (float)(gridDim.x);
s_vector->push(data);
}
cg::sync(cta);
ComplexType_t v;
if (s_vector->pop(v)) {
d_result[threadIdx.x] = v.a;
} else {
d_result[threadIdx.x] = -1;
}
// Note: deleting objects placed in shared memory is not necessary (lifetime
// of shared memory is that of the block)
}
////////////////////////////////////////////////////////////////////////////////
//
// Host code
//
////////////////////////////////////////////////////////////////////////////////
bool checkResult(int *d_result, int N) {
std::vector<int> h_result;
h_result.resize(N);
checkCudaErrors(cudaMemcpy(&h_result[0], d_result, N * sizeof(int),
cudaMemcpyDeviceToHost));
std::sort(h_result.begin(), h_result.end());
bool success = true;
bool test = false;
int value = 0;
for (int i = 0; i < N; ++i) {
if (h_result[i] != -1) {
test = true;
}
if (test && (value++) != h_result[i]) {
success = false;
}
}
return success;
}
bool testContainer(Container<int> **d_container, int blocks, int threads) {
int *d_result;
cudaMalloc(&d_result, blocks * threads * sizeof(int));
containerFill<<<blocks, threads>>>(d_container);
containerConsume<<<blocks, threads>>>(d_container, d_result);
containerDelete<<<1, 1>>>(d_container);
checkCudaErrors(cudaDeviceSynchronize());
bool success = checkResult(d_result, blocks * threads);
cudaFree(d_result);
return success;
}
bool testPlacementNew(int threads) {
int *d_result;
cudaMalloc(&d_result, threads * sizeof(int));
placementNew<<<1, threads>>>(d_result);
checkCudaErrors(cudaDeviceSynchronize());
bool success = checkResult(d_result, threads);
cudaFree(d_result);
return success;
}
bool testComplexType(int threads) {
int *d_result;
cudaMalloc(&d_result, threads * sizeof(int));
complexVector<<<1, threads>>>(d_result);
checkCudaErrors(cudaDeviceSynchronize());
bool success = checkResult(d_result, threads);
cudaFree(d_result);
return success;
}
////////////////////////////////////////////////////////////////////////////////
//
// MAIN
//
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf("%s Starting...\n\n", sSDKsample);
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
findCudaDevice(argc, (const char **)argv);
// set the heap size for device size new/delete to 128 MB
checkCudaErrors(cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128 * (1 << 20)));
Container<int> **d_container;
checkCudaErrors(cudaMalloc(&d_container, sizeof(Container<int> **)));
bool bTest = false;
int test_passed = 0;
printf(" > Container = Vector test ");
vectorCreate<<<1, 1>>>(d_container, 128 * 128);
bTest = testContainer(d_container, 128, 128);
printf(bTest ? "OK\n\n" : "NOT OK\n\n");
test_passed += (bTest ? 1 : 0);
checkCudaErrors(cudaFree(d_container));
printf(" > Container = Vector, using placement new on SMEM buffer test ");
bTest = testPlacementNew(1024);
printf(bTest ? "OK\n\n" : "NOT OK\n\n");
test_passed += (bTest ? 1 : 0);
printf(" > Container = Vector, with user defined datatype test ");
bTest = testComplexType(1024);
printf(bTest ? "OK\n\n" : "NOT OK\n\n");
test_passed += (bTest ? 1 : 0);
printf("Test Summary: %d/3 succesfully run\n", test_passed);
exit(test_passed == 3 ? EXIT_SUCCESS : EXIT_FAILURE);
}