mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-24 23:19:18 +08:00
147 lines
6.3 KiB
Plaintext
147 lines
6.3 KiB
Plaintext
|
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// KNN kernel
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
__global__ void KNN(TColor *dst, int imageW, int imageH, float Noise,
|
||
|
float lerpC, cudaTextureObject_t texImage) {
|
||
|
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
const int iy = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
// Add half of a texel to always address exact texel centers
|
||
|
const float x = (float)ix + 0.5f;
|
||
|
const float y = (float)iy + 0.5f;
|
||
|
|
||
|
if (ix < imageW && iy < imageH) {
|
||
|
// Normalized counter for the weight threshold
|
||
|
float fCount = 0;
|
||
|
// Total sum of pixel weights
|
||
|
float sumWeights = 0;
|
||
|
// Result accumulator
|
||
|
float3 clr = {0, 0, 0};
|
||
|
// Center of the KNN window
|
||
|
float4 clr00 = tex2D<float4>(texImage, x, y);
|
||
|
|
||
|
// Cycle through KNN window, surrounding (x, y) texel
|
||
|
for (float i = -KNN_WINDOW_RADIUS; i <= KNN_WINDOW_RADIUS; i++)
|
||
|
for (float j = -KNN_WINDOW_RADIUS; j <= KNN_WINDOW_RADIUS; j++) {
|
||
|
float4 clrIJ = tex2D<float4>(texImage, x + j, y + i);
|
||
|
float distanceIJ = vecLen(clr00, clrIJ);
|
||
|
|
||
|
// Derive final weight from color distance
|
||
|
float weightIJ = __expf(
|
||
|
-(distanceIJ * Noise + (i * i + j * j) * INV_KNN_WINDOW_AREA));
|
||
|
|
||
|
// Accumulate (x + j, y + i) texel color with computed weight
|
||
|
clr.x += clrIJ.x * weightIJ;
|
||
|
clr.y += clrIJ.y * weightIJ;
|
||
|
clr.z += clrIJ.z * weightIJ;
|
||
|
|
||
|
// Sum of weights for color normalization to [0..1] range
|
||
|
sumWeights += weightIJ;
|
||
|
|
||
|
// Update weight counter, if KNN weight for current window texel
|
||
|
// exceeds the weight threshold
|
||
|
fCount += (weightIJ > KNN_WEIGHT_THRESHOLD) ? INV_KNN_WINDOW_AREA : 0;
|
||
|
}
|
||
|
|
||
|
// Normalize result color by sum of weights
|
||
|
sumWeights = 1.0f / sumWeights;
|
||
|
clr.x *= sumWeights;
|
||
|
clr.y *= sumWeights;
|
||
|
clr.z *= sumWeights;
|
||
|
|
||
|
// Choose LERP quotient basing on how many texels
|
||
|
// within the KNN window exceeded the weight threshold
|
||
|
float lerpQ = (fCount > KNN_LERP_THRESHOLD) ? lerpC : 1.0f - lerpC;
|
||
|
|
||
|
// Write final result to global memory
|
||
|
clr.x = lerpf(clr.x, clr00.x, lerpQ);
|
||
|
clr.y = lerpf(clr.y, clr00.y, lerpQ);
|
||
|
clr.z = lerpf(clr.z, clr00.z, lerpQ);
|
||
|
dst[imageW * iy + ix] = make_color(clr.x, clr.y, clr.z, 0);
|
||
|
};
|
||
|
}
|
||
|
|
||
|
extern "C" void cuda_KNN(TColor *d_dst, int imageW, int imageH, float Noise,
|
||
|
float lerpC, cudaTextureObject_t texImage) {
|
||
|
dim3 threads(BLOCKDIM_X, BLOCKDIM_Y);
|
||
|
dim3 grid(iDivUp(imageW, BLOCKDIM_X), iDivUp(imageH, BLOCKDIM_Y));
|
||
|
|
||
|
KNN<<<grid, threads>>>(d_dst, imageW, imageH, Noise, lerpC, texImage);
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Stripped KNN kernel, only highlighting areas with different LERP directions
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
__global__ void KNNdiag(TColor *dst, int imageW, int imageH, float Noise,
|
||
|
float lerpC, cudaTextureObject_t texImage) {
|
||
|
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
const int iy = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
// Add half of a texel to always address exact texel centers
|
||
|
const float x = (float)ix + 0.5f;
|
||
|
const float y = (float)iy + 0.5f;
|
||
|
|
||
|
if (ix < imageW && iy < imageH) {
|
||
|
// Normalized counter for the weight threshold
|
||
|
float fCount = 0;
|
||
|
// Center of the KNN window
|
||
|
float4 clr00 = tex2D<float4>(texImage, x, y);
|
||
|
|
||
|
// Cycle through KNN window, surrounding (x, y) texel
|
||
|
for (float i = -KNN_WINDOW_RADIUS; i <= KNN_WINDOW_RADIUS; i++)
|
||
|
for (float j = -KNN_WINDOW_RADIUS; j <= KNN_WINDOW_RADIUS; j++) {
|
||
|
float4 clrIJ = tex2D<float4>(texImage, x + j, y + i);
|
||
|
float distanceIJ = vecLen(clr00, clrIJ);
|
||
|
|
||
|
// Derive final weight from color and geometric distance
|
||
|
float weightIJ = __expf(
|
||
|
-(distanceIJ * Noise + (i * i + j * j) * INV_KNN_WINDOW_AREA));
|
||
|
|
||
|
// Update weight counter, if KNN weight for current window texel
|
||
|
// exceeds the weight threshold
|
||
|
fCount +=
|
||
|
(weightIJ > KNN_WEIGHT_THRESHOLD) ? INV_KNN_WINDOW_AREA : 0.0f;
|
||
|
}
|
||
|
|
||
|
// Choose LERP quotient basing on how many texels
|
||
|
// within the KNN window exceeded the weight threshold
|
||
|
float lerpQ = (fCount > KNN_LERP_THRESHOLD) ? 1.0f : 0;
|
||
|
|
||
|
// Write final result to global memory
|
||
|
dst[imageW * iy + ix] = make_color(lerpQ, 0, (1.0f - lerpQ), 0);
|
||
|
};
|
||
|
}
|
||
|
|
||
|
extern "C" void cuda_KNNdiag(TColor *d_dst, int imageW, int imageH, float Noise,
|
||
|
float lerpC, cudaTextureObject_t texImage) {
|
||
|
dim3 threads(BLOCKDIM_X, BLOCKDIM_Y);
|
||
|
dim3 grid(iDivUp(imageW, BLOCKDIM_X), iDivUp(imageH, BLOCKDIM_Y));
|
||
|
|
||
|
KNNdiag<<<grid, threads>>>(d_dst, imageW, imageH, Noise, lerpC, texImage);
|
||
|
}
|