mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-25 02:39:15 +08:00
238 lines
7.5 KiB
C
238 lines
7.5 KiB
C
|
// Copyright (c) 1993-2023, NVIDIA CORPORATION. All rights reserved.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions
|
||
|
// are met:
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer in the
|
||
|
// documentation and/or other materials provided with the distribution.
|
||
|
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <builtin_types.h>
|
||
|
#include <cuda.h>
|
||
|
#include <math.h>
|
||
|
#include <nvvm.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <sys/stat.h>
|
||
|
|
||
|
// If 'err' is non-zero, emit an error message and exit.
|
||
|
#define checkCudaErrors(err) __checkCudaErrors(err, __FILE__, __LINE__)
|
||
|
static void __checkCudaErrors(CUresult err, const char *filename, int line) {
|
||
|
assert(filename);
|
||
|
if (CUDA_SUCCESS != err) {
|
||
|
const char *ename = NULL;
|
||
|
const CUresult res = cuGetErrorName(err, &ename);
|
||
|
fprintf(stderr,
|
||
|
"CUDA API Error %04d: \"%s\" from file <%s>, "
|
||
|
"line %i.\n",
|
||
|
err, ((CUDA_SUCCESS == res) ? ename : "Unknown"), filename, line);
|
||
|
exit(err);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return a CUDA capable device or exit if one cannot be found.
|
||
|
static CUdevice cudaDeviceInit(void) {
|
||
|
CUresult err = cuInit(0);
|
||
|
int deviceCount = 0;
|
||
|
if (CUDA_SUCCESS == err)
|
||
|
checkCudaErrors(cuDeviceGetCount(&deviceCount));
|
||
|
if (deviceCount == 0) {
|
||
|
fprintf(stderr, "cudaDeviceInit error: no devices supporting CUDA\n");
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
// Locate a CUDA supporting device and its name.
|
||
|
CUdevice cuDevice = 0;
|
||
|
checkCudaErrors(cuDeviceGet(&cuDevice, 0));
|
||
|
char name[128];
|
||
|
cuDeviceGetName(name, sizeof(name), cuDevice);
|
||
|
printf("Using CUDA Device [0]: %s\n", name);
|
||
|
|
||
|
// Obtain the device's compute capability.
|
||
|
int major = 0;
|
||
|
checkCudaErrors(cuDeviceGetAttribute(
|
||
|
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice));
|
||
|
if (major < 5) {
|
||
|
fprintf(stderr, "Device 0 is not sm_50 or later\n");
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
return cuDevice;
|
||
|
}
|
||
|
|
||
|
static CUresult initCUDA(CUcontext *phContext, CUdevice *phDevice,
|
||
|
CUmodule *phModule, CUfunction *phKernel,
|
||
|
const char *ptx) {
|
||
|
assert(phContext && phDevice && phModule && phKernel && ptx);
|
||
|
|
||
|
// Initialize.
|
||
|
*phDevice = cudaDeviceInit();
|
||
|
|
||
|
// Create a CUDA context on the device.
|
||
|
checkCudaErrors(cuCtxCreate(phContext, 0, *phDevice));
|
||
|
|
||
|
// Load the PTX.
|
||
|
checkCudaErrors(cuModuleLoadDataEx(phModule, ptx, 0, 0, 0));
|
||
|
|
||
|
// Locate the kernel entry point.
|
||
|
checkCudaErrors(cuModuleGetFunction(phKernel, *phModule, "simple"));
|
||
|
|
||
|
return CUDA_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static char *loadProgramSource(const char *filename, size_t *size) {
|
||
|
assert(filename && size);
|
||
|
char *source = NULL;
|
||
|
*size = 0;
|
||
|
FILE *fh = fopen(filename, "rb");
|
||
|
if (fh) {
|
||
|
struct stat statbuf;
|
||
|
stat(filename, &statbuf);
|
||
|
source = malloc(statbuf.st_size + 1);
|
||
|
assert(source);
|
||
|
fread(source, statbuf.st_size, 1, fh);
|
||
|
source[statbuf.st_size] = 0;
|
||
|
*size = statbuf.st_size + 1;
|
||
|
} else {
|
||
|
fprintf(stderr, "Error reading file %s\n", filename);
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
return source;
|
||
|
}
|
||
|
|
||
|
static char *generatePTX(const char *ir, size_t size, const char *filename) {
|
||
|
assert(ir && filename);
|
||
|
|
||
|
// Create a program instance for use with libNVVM.
|
||
|
nvvmProgram program;
|
||
|
nvvmResult result = nvvmCreateProgram(&program);
|
||
|
if (result != NVVM_SUCCESS) {
|
||
|
fprintf(stderr, "nvvmCreateProgram: Failed\n");
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
// Add the NVVM IR to the program instance.
|
||
|
result = nvvmAddModuleToProgram(program, ir, size, filename);
|
||
|
if (result != NVVM_SUCCESS) {
|
||
|
fprintf(stderr, "nvvmAddModuleToProgram: Failed\n");
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
// Compile the NVVM IR into PTX.
|
||
|
result = nvvmCompileProgram(program, 0, NULL);
|
||
|
if (result != NVVM_SUCCESS) {
|
||
|
fprintf(stderr, "nvvmCompileProgram: Failed\n");
|
||
|
size_t logSize;
|
||
|
nvvmGetProgramLogSize(program, &logSize);
|
||
|
char *msg = malloc(logSize);
|
||
|
assert(msg);
|
||
|
nvvmGetProgramLog(program, msg);
|
||
|
fprintf(stderr, "%s\n", msg);
|
||
|
free(msg);
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
// Obrain the resulting PTX.
|
||
|
size_t ptxSize;
|
||
|
result = nvvmGetCompiledResultSize(program, &ptxSize);
|
||
|
if (result != NVVM_SUCCESS) {
|
||
|
fprintf(stderr, "nvvmGetCompiledResultSize: Failed\n");
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
char *ptx = malloc(ptxSize);
|
||
|
assert(ptx);
|
||
|
result = nvvmGetCompiledResult(program, ptx);
|
||
|
if (result != NVVM_SUCCESS) {
|
||
|
fprintf(stderr, "nvvmGetCompiledResult: Failed\n");
|
||
|
free(ptx);
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
// Cleanup the libNVVM program instance.
|
||
|
result = nvvmDestroyProgram(&program);
|
||
|
if (result != NVVM_SUCCESS) {
|
||
|
fprintf(stderr, "nvvmDestroyProgram: Failed\n");
|
||
|
free(ptx);
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
return ptx;
|
||
|
}
|
||
|
|
||
|
int main(int argc, char **argv) {
|
||
|
const unsigned int nThreads = 32;
|
||
|
const unsigned int nBlocks = 1;
|
||
|
const size_t memSize = nThreads * nBlocks * sizeof(int);
|
||
|
const char *filename = "simple-gpu64.ll";
|
||
|
|
||
|
// Retrieve the NVVM IR from filename and create the kernel parameters.
|
||
|
size_t size = 0;
|
||
|
char *ir = loadProgramSource(filename, &size);
|
||
|
fprintf(stdout, "NVVM IR (.ll) file loaded\n");
|
||
|
|
||
|
// Use libNVVM to generate PTX from the NVVM IR.
|
||
|
char *ptx = generatePTX(ir, size, filename);
|
||
|
fprintf(stdout, "PTX generated:\n");
|
||
|
fprintf(stdout, "%s\n", ptx);
|
||
|
|
||
|
// Initialize the device and get a handle to the kernel.
|
||
|
CUcontext hContext = 0;
|
||
|
CUdevice hDevice = 0;
|
||
|
CUmodule hModule = 0;
|
||
|
CUfunction hKernel = 0;
|
||
|
checkCudaErrors(initCUDA(&hContext, &hDevice, &hModule, &hKernel, ptx));
|
||
|
|
||
|
// Allocate memory on the host and device.
|
||
|
int *hData = malloc(memSize);
|
||
|
if (!hData) {
|
||
|
fprintf(stderr, "Could not allocate host memory\n");
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
CUdeviceptr dData = 0;
|
||
|
checkCudaErrors(cuMemAlloc(&dData, memSize));
|
||
|
|
||
|
// Launch the kernel.
|
||
|
void *params[] = {&dData};
|
||
|
checkCudaErrors(cuLaunchKernel(hKernel, nBlocks, 1, 1, nThreads, 1, 1, 0,
|
||
|
NULL, params, NULL));
|
||
|
fprintf(stdout, "CUDA kernel launched\n");
|
||
|
|
||
|
// Copy the result back to the host.
|
||
|
checkCudaErrors(cuMemcpyDtoH(hData, dData, memSize));
|
||
|
|
||
|
// Print the result.
|
||
|
for (unsigned i = 0; i < nBlocks * nThreads; i++)
|
||
|
fprintf(stdout, "%d ", hData[i]);
|
||
|
fprintf(stdout, "\n");
|
||
|
|
||
|
// Cleanup.
|
||
|
if (dData)
|
||
|
checkCudaErrors(cuMemFree(dData));
|
||
|
if (hModule)
|
||
|
checkCudaErrors(cuModuleUnload(hModule));
|
||
|
if (hContext)
|
||
|
checkCudaErrors(cuCtxDestroy(hContext));
|
||
|
free(hData);
|
||
|
free(ir);
|
||
|
free(ptx);
|
||
|
|
||
|
return 0;
|
||
|
}
|