cuda-samples/Samples/VFlockingD3D10/VFlocking_kernel.cu

289 lines
8.8 KiB
Plaintext
Raw Normal View History

2021-10-21 19:04:49 +08:00
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <helper_cuda.h>
#include <helper_math.h>
#include <VFlockingD3D10.h>
#define PI 3.1415926536f
typedef unsigned int uint;
__device__ bool isInsideQuad_D(float2 pos0, float2 pos1, float width,
float height) {
if (fabs(pos0.x - pos1.x) < 0.5f * width &&
fabs(pos0.y - pos1.y) < 0.5f * height) {
return true;
} else {
return false;
}
}
__device__ bool isInsideBird(float2 pixel, float2 pos, float width,
float height, float radius) {
if (abs(pixel.x - pos.x) < 0.5f * width &&
abs(pixel.y - pos.y) < 0.5f * height ||
(pixel.x - pos.x) * (pixel.x - pos.x) +
(pixel.y - pos.y) * (pixel.y - pos.y) <
radius * radius) {
return true;
} else {
return false;
}
}
__global__ void cuda_kernel_update(float2 *newPos, float2 *curPos,
uint numBirds, bool *hasproxy,
bool *neighbors, bool *rightgoals,
bool *leftgoals, Params *params) {
uint i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= numBirds) {
return;
}
float minDist = 50000.f;
float2 dij = make_float2(0.f);
if (!hasproxy[i]) {
for (uint j = 0; j < numBirds; j++) {
if (j == i) {
continue;
}
if (leftgoals[i * numBirds + j]) {
dij = params->dX * normalize(curPos[j] - curPos[i]);
break;
}
}
} else {
bool collision = false;
for (uint j = 0; j < numBirds; j++) {
float d;
if (leftgoals[i * numBirds + j]) {
d = curPos[j].x - (params->wingspan + params->lambda) - curPos[i].x;
if (fabs(d) < fabs(minDist)) {
minDist = d;
}
}
if (rightgoals[i * numBirds + j]) {
d = curPos[j].x + (params->wingspan + params->lambda) - curPos[i].x;
if (fabs(d) < fabs(minDist)) {
minDist = d;
}
}
if (neighbors[i * numBirds + j] && !collision) {
if (curPos[j].y >= curPos[i].y &&
curPos[j].y < curPos[i].y + params->epsilon) {
dij.y = -params->dY;
collision = true;
}
}
}
if (fabs(minDist) <= params->dX) {
return;
}
dij.x = minDist > 0 ? params->dX : -params->dX;
}
newPos[i].x = curPos[i].x + dij.x;
newPos[i].y = curPos[i].y + dij.y;
}
__global__ void cuda_kernel_checktriples(float2 *pos, uint numBirds,
bool *hasproxy, bool *neighbors,
bool *rightgoals, bool *leftgoals,
uint3 *triples, Params *params) {
uint ith = blockIdx.x * blockDim.x + threadIdx.x;
if (ith >= numBirds * (numBirds - 1) * (numBirds - 2) / 6) {
return;
}
uint a[3];
a[0] = triples[ith].x;
a[1] = triples[ith].y;
a[2] = triples[ith].z;
uint i, j, x;
for (i = 0; i < 3; i++) {
for (j = 2; j > i; j--) {
if (pos[a[j - 1]].y > pos[a[j]].y) {
x = a[j - 1];
a[j - 1] = a[j];
a[j] = x;
}
}
}
if (hasproxy[a[0]]) {
float a2a1 = pos[a[2]].x - pos[a[1]].x;
if (fabs(a2a1) < 2.f * (params->wingspan + params->lambda))
if (a2a1 >= 0) {
if (leftgoals[a[0] * numBirds + a[2]]) {
leftgoals[a[0] * numBirds + a[2]] = false;
}
if (rightgoals[a[0] * numBirds + a[1]]) {
rightgoals[a[0] * numBirds + a[1]] = false;
}
} else {
if (leftgoals[a[0] * numBirds + a[1]]) {
leftgoals[a[0] * numBirds + a[1]] = false;
}
if (rightgoals[a[0] * numBirds + a[2]]) {
rightgoals[a[0] * numBirds + a[2]] = false;
}
}
} else {
if ((leftgoals[a[0] * numBirds + a[2]]) &&
(leftgoals[a[0] * numBirds + a[1]]))
if ((length(pos[a[1]] - pos[a[0]]) < length(pos[a[2]] - pos[a[0]]))) {
leftgoals[a[0] * numBirds + a[2]] = false;
} else {
leftgoals[a[0] * numBirds + a[1]] = false;
}
}
}
__global__ void cuda_kernel_checkpairs(float2 *pos, uint numBirds,
bool *hasproxy, bool *neighbors,
bool *rightgoals, bool *leftgoals,
uint2 *pairs, Params *params) {
uint i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= numBirds * (numBirds - 1) / 2) {
return;
}
uint front, back;
if (pos[pairs[i].y].y > pos[pairs[i].x].y) {
front = pairs[i].y;
back = pairs[i].x;
} else {
front = pairs[i].x;
back = pairs[i].y;
}
leftgoals[back * numBirds + front] = true;
rightgoals[back * numBirds + front] = true;
float2 stepback;
stepback.x = pos[front].x;
stepback.y = pos[front].y - 0.5f * params->upwashY;
if (isInsideQuad_D(
pos[back], stepback,
2.f * (params->wingspan + params->lambda + params->upwashX),
params->upwashY)) {
neighbors[back * numBirds + front] = true;
if (!hasproxy[back]) {
hasproxy[back] = true;
}
}
}
extern "C" void cuda_simulate(float2 *newPos, float2 *curPos, uint numBirds,
bool *d_hasproxy, bool *d_neighbors,
bool *d_leftgoals, bool *d_rightgoals,
uint2 *d_pairs, uint3 *d_triples,
Params *d_params) {
cudaError_t error = cudaSuccess;
float tempms;
static float ms = 0.f;
static uint step = 0;
int smallblockSize = 32, midblockSize = 128, bigblockSize = 32;
cudaEvent_t e_start, e_stop;
cudaEventCreate(&e_start);
cudaEventCreate(&e_stop);
cudaEventRecord(e_start, 0);
cudaMemset(d_leftgoals, 0, numBirds * numBirds * sizeof(bool));
cudaMemset(d_rightgoals, 0, numBirds * numBirds * sizeof(bool));
cudaMemset(d_hasproxy, 0, numBirds * sizeof(bool));
cudaMemset(d_neighbors, 0, numBirds * numBirds * sizeof(bool));
dim3 Db = dim3(bigblockSize);
dim3 Dg =
dim3((numBirds * (numBirds - 1) / 2 + bigblockSize - 1) / bigblockSize);
cuda_kernel_checkpairs<<<Dg, Db>>>(curPos, numBirds, d_hasproxy, d_neighbors,
d_rightgoals, d_leftgoals, d_pairs,
d_params);
Db = dim3(midblockSize);
Dg =
dim3((numBirds * (numBirds - 1) * (numBirds - 2) / 6 + bigblockSize - 1) /
bigblockSize);
cuda_kernel_checktriples<<<Dg, Db>>>(curPos, numBirds, d_hasproxy,
d_neighbors, d_rightgoals, d_leftgoals,
d_triples, d_params);
Db = dim3(smallblockSize);
Dg = dim3((numBirds + smallblockSize - 1) / smallblockSize);
cuda_kernel_update<<<Dg, Db>>>(newPos, curPos, numBirds, d_hasproxy,
d_neighbors, d_rightgoals, d_leftgoals,
d_params /*, d_pWingTips */);
cudaDeviceSynchronize();
cudaEventRecord(e_stop, 0);
cudaEventSynchronize(e_stop);
cudaEventElapsedTime(&tempms, e_start, e_stop);
ms += tempms;
if (!(step % 100) && step) {
printf("GPU, step %d \ntime per step %6.3f ms \n", step, ms / 100.f);
ms = 0.f;
}
step++;
error = cudaGetLastError();
if (error != cudaSuccess) {
printf("one of the cuda kernels failed to launch, error = %d\n", error);
}
}