mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-25 01:29:17 +08:00
127 lines
4.4 KiB
Plaintext
127 lines
4.4 KiB
Plaintext
|
/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
// includes, project
|
||
|
#include <helper_cuda.h>
|
||
|
#include <helper_functions.h>
|
||
|
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#include <cooperative_groups.h>
|
||
|
|
||
|
namespace cg = cooperative_groups;
|
||
|
|
||
|
#define NUM_ELEMS 10000000
|
||
|
#define NUM_THREADS_PER_BLOCK 512
|
||
|
|
||
|
// warp-aggregated atomic increment
|
||
|
__device__ int atomicAggInc(int *counter) {
|
||
|
cg::coalesced_group active = cg::coalesced_threads();
|
||
|
|
||
|
int mask = active.ballot(1);
|
||
|
// select the leader
|
||
|
int leader = __ffs(mask) - 1;
|
||
|
|
||
|
// leader does the update
|
||
|
int res = 0;
|
||
|
if (active.thread_rank() == leader) {
|
||
|
res = atomicAdd(counter, __popc(mask));
|
||
|
}
|
||
|
|
||
|
// broadcast result
|
||
|
res = active.shfl(res, leader);
|
||
|
|
||
|
// each thread computes its own value
|
||
|
return res + __popc(mask & ((1 << active.thread_rank()) - 1));
|
||
|
}
|
||
|
|
||
|
__global__ void filter_arr(int *dst, int *nres, const int *src, int n) {
|
||
|
int id = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
|
||
|
for (int i = id; i < n; i += gridDim.x * blockDim.x) {
|
||
|
if (src[i] > 0) dst[atomicAggInc(nres)] = src[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, char **argv) {
|
||
|
int *data_to_filter, *filtered_data, nres = 0;
|
||
|
int *d_data_to_filter, *d_filtered_data, *d_nres;
|
||
|
|
||
|
data_to_filter = reinterpret_cast<int *>(malloc(sizeof(int) * NUM_ELEMS));
|
||
|
|
||
|
// Generate input data.
|
||
|
for (int i = 0; i < NUM_ELEMS; i++) {
|
||
|
data_to_filter[i] = rand() % 20;
|
||
|
}
|
||
|
|
||
|
findCudaDevice(argc, (const char **)argv);
|
||
|
|
||
|
checkCudaErrors(cudaMalloc(&d_data_to_filter, sizeof(int) * NUM_ELEMS));
|
||
|
checkCudaErrors(cudaMalloc(&d_filtered_data, sizeof(int) * NUM_ELEMS));
|
||
|
checkCudaErrors(cudaMalloc(&d_nres, sizeof(int)));
|
||
|
|
||
|
checkCudaErrors(cudaMemcpy(d_data_to_filter, data_to_filter,
|
||
|
sizeof(int) * NUM_ELEMS, cudaMemcpyHostToDevice));
|
||
|
checkCudaErrors(cudaMemset(d_nres, 0, sizeof(int)));
|
||
|
|
||
|
dim3 dimBlock(NUM_THREADS_PER_BLOCK, 1, 1);
|
||
|
dim3 dimGrid((NUM_ELEMS / NUM_THREADS_PER_BLOCK) + 1, 1, 1);
|
||
|
|
||
|
filter_arr<<<dimGrid, dimBlock>>>(d_filtered_data, d_nres, d_data_to_filter,
|
||
|
NUM_ELEMS);
|
||
|
|
||
|
checkCudaErrors(
|
||
|
cudaMemcpy(&nres, d_nres, sizeof(int), cudaMemcpyDeviceToHost));
|
||
|
|
||
|
filtered_data = reinterpret_cast<int *>(malloc(sizeof(int) * nres));
|
||
|
|
||
|
checkCudaErrors(cudaMemcpy(filtered_data, d_filtered_data, sizeof(int) * nres,
|
||
|
cudaMemcpyDeviceToHost));
|
||
|
|
||
|
int *host_filtered_data =
|
||
|
reinterpret_cast<int *>(malloc(sizeof(int) * NUM_ELEMS));
|
||
|
|
||
|
// Generate host output with host filtering code.
|
||
|
int host_flt_count = 0;
|
||
|
for (int i = 0; i < NUM_ELEMS; i++) {
|
||
|
if (data_to_filter[i] > 0) {
|
||
|
host_filtered_data[host_flt_count++] = data_to_filter[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
printf("\nWarp Aggregated Atomics %s \n",
|
||
|
host_flt_count == nres ? "PASSED" : "FAILED");
|
||
|
|
||
|
checkCudaErrors(cudaFree(d_data_to_filter));
|
||
|
checkCudaErrors(cudaFree(d_filtered_data));
|
||
|
checkCudaErrors(cudaFree(d_nres));
|
||
|
free(data_to_filter);
|
||
|
free(filtered_data);
|
||
|
free(host_filtered_data);
|
||
|
}
|