mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-25 00:39:14 +08:00
158 lines
5.8 KiB
Plaintext
158 lines
5.8 KiB
Plaintext
|
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Global types and parameters
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <cooperative_groups.h>
|
||
|
|
||
|
namespace cg = cooperative_groups;
|
||
|
|
||
|
#include <helper_cuda.h>
|
||
|
#include "binomialOptions_common.h"
|
||
|
#include "realtype.h"
|
||
|
|
||
|
// Preprocessed input option data
|
||
|
typedef struct {
|
||
|
real S;
|
||
|
real X;
|
||
|
real vDt;
|
||
|
real puByDf;
|
||
|
real pdByDf;
|
||
|
} __TOptionData;
|
||
|
static __constant__ __TOptionData d_OptionData[MAX_OPTIONS];
|
||
|
static __device__ real d_CallValue[MAX_OPTIONS];
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Overloaded shortcut functions for different precision modes
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
#ifndef DOUBLE_PRECISION
|
||
|
__device__ inline float expiryCallValue(float S, float X, float vDt, int i) {
|
||
|
float d = S * __expf(vDt * (2.0f * i - NUM_STEPS)) - X;
|
||
|
return (d > 0.0F) ? d : 0.0F;
|
||
|
}
|
||
|
#else
|
||
|
__device__ inline double expiryCallValue(double S, double X, double vDt,
|
||
|
int i) {
|
||
|
double d = S * exp(vDt * (2.0 * i - NUM_STEPS)) - X;
|
||
|
return (d > 0.0) ? d : 0.0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// GPU kernel
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
#define THREADBLOCK_SIZE 128
|
||
|
#define ELEMS_PER_THREAD (NUM_STEPS / THREADBLOCK_SIZE)
|
||
|
#if NUM_STEPS % THREADBLOCK_SIZE
|
||
|
#error Bad constants
|
||
|
#endif
|
||
|
|
||
|
__global__ void binomialOptionsKernel() {
|
||
|
// Handle to thread block group
|
||
|
cg::thread_block cta = cg::this_thread_block();
|
||
|
__shared__ real call_exchange[THREADBLOCK_SIZE + 1];
|
||
|
|
||
|
const int tid = threadIdx.x;
|
||
|
const real S = d_OptionData[blockIdx.x].S;
|
||
|
const real X = d_OptionData[blockIdx.x].X;
|
||
|
const real vDt = d_OptionData[blockIdx.x].vDt;
|
||
|
const real puByDf = d_OptionData[blockIdx.x].puByDf;
|
||
|
const real pdByDf = d_OptionData[blockIdx.x].pdByDf;
|
||
|
|
||
|
real call[ELEMS_PER_THREAD + 1];
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < ELEMS_PER_THREAD; ++i)
|
||
|
call[i] = expiryCallValue(S, X, vDt, tid * ELEMS_PER_THREAD + i);
|
||
|
|
||
|
if (tid == 0)
|
||
|
call_exchange[THREADBLOCK_SIZE] = expiryCallValue(S, X, vDt, NUM_STEPS);
|
||
|
|
||
|
int final_it = max(0, tid * ELEMS_PER_THREAD - 1);
|
||
|
|
||
|
#pragma unroll 16
|
||
|
for (int i = NUM_STEPS; i > 0; --i) {
|
||
|
call_exchange[tid] = call[0];
|
||
|
cg::sync(cta);
|
||
|
call[ELEMS_PER_THREAD] = call_exchange[tid + 1];
|
||
|
cg::sync(cta);
|
||
|
|
||
|
if (i > final_it) {
|
||
|
#pragma unroll
|
||
|
for (int j = 0; j < ELEMS_PER_THREAD; ++j)
|
||
|
call[j] = puByDf * call[j + 1] + pdByDf * call[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (tid == 0) {
|
||
|
d_CallValue[blockIdx.x] = call[0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Host-side interface to GPU binomialOptions
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
extern "C" void binomialOptionsGPU(real *callValue, TOptionData *optionData,
|
||
|
int optN) {
|
||
|
__TOptionData h_OptionData[MAX_OPTIONS];
|
||
|
|
||
|
for (int i = 0; i < optN; i++) {
|
||
|
const real T = optionData[i].T;
|
||
|
const real R = optionData[i].R;
|
||
|
const real V = optionData[i].V;
|
||
|
|
||
|
const real dt = T / (real)NUM_STEPS;
|
||
|
const real vDt = V * sqrt(dt);
|
||
|
const real rDt = R * dt;
|
||
|
// Per-step interest and discount factors
|
||
|
const real If = exp(rDt);
|
||
|
const real Df = exp(-rDt);
|
||
|
// Values and pseudoprobabilities of upward and downward moves
|
||
|
const real u = exp(vDt);
|
||
|
const real d = exp(-vDt);
|
||
|
const real pu = (If - d) / (u - d);
|
||
|
const real pd = (real)1.0 - pu;
|
||
|
const real puByDf = pu * Df;
|
||
|
const real pdByDf = pd * Df;
|
||
|
|
||
|
h_OptionData[i].S = (real)optionData[i].S;
|
||
|
h_OptionData[i].X = (real)optionData[i].X;
|
||
|
h_OptionData[i].vDt = (real)vDt;
|
||
|
h_OptionData[i].puByDf = (real)puByDf;
|
||
|
h_OptionData[i].pdByDf = (real)pdByDf;
|
||
|
}
|
||
|
|
||
|
checkCudaErrors(cudaMemcpyToSymbol(d_OptionData, h_OptionData,
|
||
|
optN * sizeof(__TOptionData)));
|
||
|
binomialOptionsKernel<<<optN, THREADBLOCK_SIZE>>>();
|
||
|
getLastCudaError("binomialOptionsKernel() execution failed.\n");
|
||
|
checkCudaErrors(
|
||
|
cudaMemcpyFromSymbol(callValue, d_CallValue, optN * sizeof(real)));
|
||
|
}
|