cuda-samples/Samples/scan/scan.cu

268 lines
9.4 KiB
Plaintext
Raw Normal View History

2021-10-21 19:04:49 +08:00
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
#include "scan_common.h"
// All three kernels run 512 threads per workgroup
// Must be a power of two
#define THREADBLOCK_SIZE 256
////////////////////////////////////////////////////////////////////////////////
// Basic scan codelets
////////////////////////////////////////////////////////////////////////////////
// Naive inclusive scan: O(N * log2(N)) operations
// Allocate 2 * 'size' local memory, initialize the first half
// with 'size' zeros avoiding if(pos >= offset) condition evaluation
// and saving instructions
inline __device__ uint scan1Inclusive(uint idata, volatile uint *s_Data,
uint size, cg::thread_block cta) {
uint pos = 2 * threadIdx.x - (threadIdx.x & (size - 1));
s_Data[pos] = 0;
pos += size;
s_Data[pos] = idata;
for (uint offset = 1; offset < size; offset <<= 1) {
cg::sync(cta);
uint t = s_Data[pos] + s_Data[pos - offset];
cg::sync(cta);
s_Data[pos] = t;
}
return s_Data[pos];
}
inline __device__ uint scan1Exclusive(uint idata, volatile uint *s_Data,
uint size, cg::thread_block cta) {
return scan1Inclusive(idata, s_Data, size, cta) - idata;
}
inline __device__ uint4 scan4Inclusive(uint4 idata4, volatile uint *s_Data,
uint size, cg::thread_block cta) {
// Level-0 inclusive scan
idata4.y += idata4.x;
idata4.z += idata4.y;
idata4.w += idata4.z;
// Level-1 exclusive scan
uint oval = scan1Exclusive(idata4.w, s_Data, size / 4, cta);
idata4.x += oval;
idata4.y += oval;
idata4.z += oval;
idata4.w += oval;
return idata4;
}
// Exclusive vector scan: the array to be scanned is stored
// in local thread memory scope as uint4
inline __device__ uint4 scan4Exclusive(uint4 idata4, volatile uint *s_Data,
uint size, cg::thread_block cta) {
uint4 odata4 = scan4Inclusive(idata4, s_Data, size, cta);
odata4.x -= idata4.x;
odata4.y -= idata4.y;
odata4.z -= idata4.z;
odata4.w -= idata4.w;
return odata4;
}
////////////////////////////////////////////////////////////////////////////////
// Scan kernels
////////////////////////////////////////////////////////////////////////////////
__global__ void scanExclusiveShared(uint4 *d_Dst, uint4 *d_Src, uint size) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ uint s_Data[2 * THREADBLOCK_SIZE];
uint pos = blockIdx.x * blockDim.x + threadIdx.x;
// Load data
uint4 idata4 = d_Src[pos];
// Calculate exclusive scan
uint4 odata4 = scan4Exclusive(idata4, s_Data, size, cta);
// Write back
d_Dst[pos] = odata4;
}
// Exclusive scan of top elements of bottom-level scans (4 * THREADBLOCK_SIZE)
__global__ void scanExclusiveShared2(uint *d_Buf, uint *d_Dst, uint *d_Src,
uint N, uint arrayLength) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ uint s_Data[2 * THREADBLOCK_SIZE];
// Skip loads and stores for inactive threads of last threadblock (pos >= N)
uint pos = blockIdx.x * blockDim.x + threadIdx.x;
// Load top elements
// Convert results of bottom-level scan back to inclusive
uint idata = 0;
if (pos < N)
idata = d_Dst[(4 * THREADBLOCK_SIZE) - 1 + (4 * THREADBLOCK_SIZE) * pos] +
d_Src[(4 * THREADBLOCK_SIZE) - 1 + (4 * THREADBLOCK_SIZE) * pos];
// Compute
uint odata = scan1Exclusive(idata, s_Data, arrayLength, cta);
// Avoid out-of-bound access
if (pos < N) {
d_Buf[pos] = odata;
}
}
// Final step of large-array scan: combine basic inclusive scan with exclusive
// scan of top elements of input arrays
__global__ void uniformUpdate(uint4 *d_Data, uint *d_Buffer) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ uint buf;
uint pos = blockIdx.x * blockDim.x + threadIdx.x;
if (threadIdx.x == 0) {
buf = d_Buffer[blockIdx.x];
}
cg::sync(cta);
uint4 data4 = d_Data[pos];
data4.x += buf;
data4.y += buf;
data4.z += buf;
data4.w += buf;
d_Data[pos] = data4;
}
////////////////////////////////////////////////////////////////////////////////
// Interface function
////////////////////////////////////////////////////////////////////////////////
// Derived as 32768 (max power-of-two gridDim.x) * 4 * THREADBLOCK_SIZE
// Due to scanExclusiveShared<<<>>>() 1D block addressing
extern "C" const uint MAX_BATCH_ELEMENTS = 64 * 1048576;
extern "C" const uint MIN_SHORT_ARRAY_SIZE = 4;
extern "C" const uint MAX_SHORT_ARRAY_SIZE = 4 * THREADBLOCK_SIZE;
extern "C" const uint MIN_LARGE_ARRAY_SIZE = 8 * THREADBLOCK_SIZE;
extern "C" const uint MAX_LARGE_ARRAY_SIZE =
4 * THREADBLOCK_SIZE * THREADBLOCK_SIZE;
// Internal exclusive scan buffer
static uint *d_Buf;
extern "C" void initScan(void) {
checkCudaErrors(
cudaMalloc((void **)&d_Buf,
(MAX_BATCH_ELEMENTS / (4 * THREADBLOCK_SIZE)) * sizeof(uint)));
}
extern "C" void closeScan(void) { checkCudaErrors(cudaFree(d_Buf)); }
static uint factorRadix2(uint &log2L, uint L) {
if (!L) {
log2L = 0;
return 0;
} else {
for (log2L = 0; (L & 1) == 0; L >>= 1, log2L++)
;
return L;
}
}
static uint iDivUp(uint dividend, uint divisor) {
return ((dividend % divisor) == 0) ? (dividend / divisor)
: (dividend / divisor + 1);
}
extern "C" size_t scanExclusiveShort(uint *d_Dst, uint *d_Src, uint batchSize,
uint arrayLength) {
// Check power-of-two factorization
uint log2L;
uint factorizationRemainder = factorRadix2(log2L, arrayLength);
assert(factorizationRemainder == 1);
// Check supported size range
assert((arrayLength >= MIN_SHORT_ARRAY_SIZE) &&
(arrayLength <= MAX_SHORT_ARRAY_SIZE));
// Check total batch size limit
assert((batchSize * arrayLength) <= MAX_BATCH_ELEMENTS);
// Check all threadblocks to be fully packed with data
assert((batchSize * arrayLength) % (4 * THREADBLOCK_SIZE) == 0);
scanExclusiveShared<<<(batchSize * arrayLength) / (4 * THREADBLOCK_SIZE),
THREADBLOCK_SIZE>>>((uint4 *)d_Dst, (uint4 *)d_Src,
arrayLength);
getLastCudaError("scanExclusiveShared() execution FAILED\n");
return THREADBLOCK_SIZE;
}
extern "C" size_t scanExclusiveLarge(uint *d_Dst, uint *d_Src, uint batchSize,
uint arrayLength) {
// Check power-of-two factorization
uint log2L;
uint factorizationRemainder = factorRadix2(log2L, arrayLength);
assert(factorizationRemainder == 1);
// Check supported size range
assert((arrayLength >= MIN_LARGE_ARRAY_SIZE) &&
(arrayLength <= MAX_LARGE_ARRAY_SIZE));
// Check total batch size limit
assert((batchSize * arrayLength) <= MAX_BATCH_ELEMENTS);
scanExclusiveShared<<<(batchSize * arrayLength) / (4 * THREADBLOCK_SIZE),
THREADBLOCK_SIZE>>>((uint4 *)d_Dst, (uint4 *)d_Src,
4 * THREADBLOCK_SIZE);
getLastCudaError("scanExclusiveShared() execution FAILED\n");
// Not all threadblocks need to be packed with input data:
// inactive threads of highest threadblock just don't do global reads and
// writes
const uint blockCount2 = iDivUp(
(batchSize * arrayLength) / (4 * THREADBLOCK_SIZE), THREADBLOCK_SIZE);
scanExclusiveShared2<<<blockCount2, THREADBLOCK_SIZE>>>(
(uint *)d_Buf, (uint *)d_Dst, (uint *)d_Src,
(batchSize * arrayLength) / (4 * THREADBLOCK_SIZE),
arrayLength / (4 * THREADBLOCK_SIZE));
getLastCudaError("scanExclusiveShared2() execution FAILED\n");
uniformUpdate<<<(batchSize * arrayLength) / (4 * THREADBLOCK_SIZE),
THREADBLOCK_SIZE>>>((uint4 *)d_Dst, (uint *)d_Buf);
getLastCudaError("uniformUpdate() execution FAILED\n");
return THREADBLOCK_SIZE;
}