mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 14:19:15 +08:00
536 lines
15 KiB
C++
536 lines
15 KiB
C++
|
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
|||
|
*
|
|||
|
* Redistribution and use in source and binary forms, with or without
|
|||
|
* modification, are permitted provided that the following conditions
|
|||
|
* are met:
|
|||
|
* * Redistributions of source code must retain the above copyright
|
|||
|
* notice, this list of conditions and the following disclaimer.
|
|||
|
* * Redistributions in binary form must reproduce the above copyright
|
|||
|
* notice, this list of conditions and the following disclaimer in the
|
|||
|
* documentation and/or other materials provided with the distribution.
|
|||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|||
|
* contributors may be used to endorse or promote products derived
|
|||
|
* from this software without specific prior written permission.
|
|||
|
*
|
|||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|||
|
*/
|
|||
|
|
|||
|
/*
|
|||
|
Recursive Gaussian filter
|
|||
|
sgreen 8/1/08
|
|||
|
|
|||
|
This code sample implements a Gaussian blur using Deriche's recursive method:
|
|||
|
http://citeseer.ist.psu.edu/deriche93recursively.html
|
|||
|
|
|||
|
This is similar to the box filter sample in the SDK, but it uses the previous
|
|||
|
outputs of the filter as well as the previous inputs. This is also known as an
|
|||
|
IIR (infinite impulse response) filter, since its response to an input impulse
|
|||
|
can last forever.
|
|||
|
|
|||
|
The main advantage of this method is that the execution time is independent of
|
|||
|
the filter width.
|
|||
|
|
|||
|
The GPU processes columns of the image in parallel. To avoid uncoalesced reads
|
|||
|
for the row pass we transpose the image and then transpose it back again
|
|||
|
afterwards.
|
|||
|
|
|||
|
The implementation is based on code from the CImg library:
|
|||
|
http://cimg.sourceforge.net/
|
|||
|
Thanks to David Tschumperl<EFBFBD> and all the CImg contributors!
|
|||
|
*/
|
|||
|
|
|||
|
#pragma warning(disable : 4819)
|
|||
|
|
|||
|
// OpenGL Graphics includes
|
|||
|
#include <helper_gl.h>
|
|||
|
#if defined(__APPLE__) || defined(MACOSX)
|
|||
|
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
|||
|
#include <GLUT/glut.h>
|
|||
|
#ifndef glutCloseFunc
|
|||
|
#define glutCloseFunc glutWMCloseFunc
|
|||
|
#endif
|
|||
|
#else
|
|||
|
#include <GL/freeglut.h>
|
|||
|
#endif
|
|||
|
|
|||
|
// CUDA includes and interop headers
|
|||
|
#include <cuda_runtime.h>
|
|||
|
#include <cuda_gl_interop.h>
|
|||
|
|
|||
|
// CUDA utilities and system includes
|
|||
|
#include <helper_functions.h>
|
|||
|
#include <helper_cuda.h> // includes cuda.h and cuda_runtime_api.h
|
|||
|
|
|||
|
// Includes
|
|||
|
#include <stdlib.h>
|
|||
|
#include <stdio.h>
|
|||
|
#include <string.h>
|
|||
|
#include <math.h>
|
|||
|
|
|||
|
#define MAX(a, b) ((a > b) ? a : b)
|
|||
|
|
|||
|
#define USE_SIMPLE_FILTER 0
|
|||
|
|
|||
|
#define MAX_EPSILON_ERROR 5.0f
|
|||
|
#define THRESHOLD 0.15f
|
|||
|
|
|||
|
// Define the files that are to be save and the reference images for validation
|
|||
|
const char *sOriginal[] = {"lena_10.ppm", "lena_14.ppm", "lena_18.ppm",
|
|||
|
"lena_22.ppm", NULL};
|
|||
|
|
|||
|
const char *sReference[] = {"ref_10.ppm", "ref_14.ppm", "ref_18.ppm",
|
|||
|
"ref_22.ppm", NULL};
|
|||
|
|
|||
|
const char *image_filename = "lena.ppm";
|
|||
|
float sigma = 10.0f;
|
|||
|
int order = 0;
|
|||
|
int nthreads = 64; // number of threads per block
|
|||
|
|
|||
|
unsigned int width, height;
|
|||
|
unsigned int *h_img = NULL;
|
|||
|
unsigned int *d_img = NULL;
|
|||
|
unsigned int *d_temp = NULL;
|
|||
|
|
|||
|
GLuint pbo = 0; // OpenGL pixel buffer object
|
|||
|
GLuint texid = 0; // texture
|
|||
|
|
|||
|
cudaGraphicsResource_t cuda_vbo_resource;
|
|||
|
|
|||
|
StopWatchInterface *timer = 0;
|
|||
|
|
|||
|
// Auto-Verification Code
|
|||
|
const int frameCheckNumber = 4;
|
|||
|
int fpsCount = 0; // FPS count for averaging
|
|||
|
int fpsLimit = 1; // FPS limit for sampling
|
|||
|
unsigned int frameCount = 0;
|
|||
|
|
|||
|
int *pArgc = NULL;
|
|||
|
char **pArgv = NULL;
|
|||
|
|
|||
|
bool runBenchmark = false;
|
|||
|
|
|||
|
const char *sSDKsample = "CUDA Recursive Gaussian";
|
|||
|
|
|||
|
extern "C" void transpose(unsigned int *d_src, unsigned int *d_dest,
|
|||
|
unsigned int width, int height);
|
|||
|
|
|||
|
extern "C" void gaussianFilterRGBA(unsigned int *d_src, unsigned int *d_dest,
|
|||
|
unsigned int *d_temp, int width, int height,
|
|||
|
float sigma, int order, int nthreads);
|
|||
|
|
|||
|
void cleanup();
|
|||
|
|
|||
|
void computeFPS() {
|
|||
|
frameCount++;
|
|||
|
fpsCount++;
|
|||
|
|
|||
|
if (fpsCount == fpsLimit) {
|
|||
|
char fps[256];
|
|||
|
float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
|
|||
|
sprintf(fps, "%s (sigma=%4.2f): %3.1f fps", sSDKsample, sigma, ifps);
|
|||
|
|
|||
|
glutSetWindowTitle(fps);
|
|||
|
fpsCount = 0;
|
|||
|
|
|||
|
fpsLimit = ftoi(MAX(ifps, 1.f));
|
|||
|
sdkResetTimer(&timer);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// display results using OpenGL
|
|||
|
void display() {
|
|||
|
sdkStartTimer(&timer);
|
|||
|
|
|||
|
// execute filter, writing results to pbo
|
|||
|
unsigned int *d_result;
|
|||
|
checkCudaErrors(cudaGraphicsMapResources(1, &cuda_vbo_resource, 0));
|
|||
|
size_t num_bytes;
|
|||
|
checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
|
|||
|
(void **)&d_result, &num_bytes, cuda_vbo_resource));
|
|||
|
gaussianFilterRGBA(d_img, d_result, d_temp, width, height, sigma, order,
|
|||
|
nthreads);
|
|||
|
|
|||
|
// unmap buffer object
|
|||
|
checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_vbo_resource, 0));
|
|||
|
|
|||
|
// load texture from pbo
|
|||
|
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
|
|||
|
glBindTexture(GL_TEXTURE_2D, texid);
|
|||
|
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
|
|||
|
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA,
|
|||
|
GL_UNSIGNED_BYTE, 0);
|
|||
|
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
|
|||
|
|
|||
|
// display results
|
|||
|
glClear(GL_COLOR_BUFFER_BIT);
|
|||
|
|
|||
|
glEnable(GL_TEXTURE_2D);
|
|||
|
glDisable(GL_DEPTH_TEST);
|
|||
|
|
|||
|
glBegin(GL_QUADS);
|
|||
|
glTexCoord2f(0, 1);
|
|||
|
glVertex2f(0, 0);
|
|||
|
glTexCoord2f(1, 1);
|
|||
|
glVertex2f(1, 0);
|
|||
|
glTexCoord2f(1, 0);
|
|||
|
glVertex2f(1, 1);
|
|||
|
glTexCoord2f(0, 0);
|
|||
|
glVertex2f(0, 1);
|
|||
|
glEnd();
|
|||
|
|
|||
|
glDisable(GL_TEXTURE_2D);
|
|||
|
glutSwapBuffers();
|
|||
|
|
|||
|
sdkStopTimer(&timer);
|
|||
|
|
|||
|
computeFPS();
|
|||
|
}
|
|||
|
|
|||
|
void idle() { glutPostRedisplay(); }
|
|||
|
|
|||
|
void cleanup() {
|
|||
|
sdkDeleteTimer(&timer);
|
|||
|
|
|||
|
checkCudaErrors(cudaFree(d_img));
|
|||
|
checkCudaErrors(cudaFree(d_temp));
|
|||
|
|
|||
|
if (!runBenchmark) {
|
|||
|
if (pbo) {
|
|||
|
// unregister this buffer object with CUDA
|
|||
|
checkCudaErrors(cudaGraphicsUnregisterResource(cuda_vbo_resource));
|
|||
|
glDeleteBuffers(1, &pbo);
|
|||
|
}
|
|||
|
|
|||
|
if (texid) {
|
|||
|
glDeleteTextures(1, &texid);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void keyboard(unsigned char key, int x, int y) {
|
|||
|
switch (key) {
|
|||
|
case 27:
|
|||
|
#if defined(__APPLE__) || defined(MACOSX)
|
|||
|
exit(EXIT_SUCCESS);
|
|||
|
#else
|
|||
|
glutDestroyWindow(glutGetWindow());
|
|||
|
return;
|
|||
|
#endif
|
|||
|
break;
|
|||
|
|
|||
|
case '=':
|
|||
|
sigma += 0.1f;
|
|||
|
break;
|
|||
|
|
|||
|
case '-':
|
|||
|
sigma -= 0.1f;
|
|||
|
|
|||
|
if (sigma < 0.0) {
|
|||
|
sigma = 0.0f;
|
|||
|
}
|
|||
|
|
|||
|
break;
|
|||
|
|
|||
|
case '+':
|
|||
|
sigma += 1.0f;
|
|||
|
break;
|
|||
|
|
|||
|
case '_':
|
|||
|
sigma -= 1.0f;
|
|||
|
|
|||
|
if (sigma < 0.0) {
|
|||
|
sigma = 0.0f;
|
|||
|
}
|
|||
|
|
|||
|
break;
|
|||
|
|
|||
|
case '0':
|
|||
|
order = 0;
|
|||
|
break;
|
|||
|
|
|||
|
case '1':
|
|||
|
order = 1;
|
|||
|
sigma = 0.5f;
|
|||
|
break;
|
|||
|
|
|||
|
case '2':
|
|||
|
order = 2;
|
|||
|
sigma = 0.5f;
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
printf("sigma = %f\n", sigma);
|
|||
|
glutPostRedisplay();
|
|||
|
}
|
|||
|
|
|||
|
void reshape(int x, int y) {
|
|||
|
glViewport(0, 0, x, y);
|
|||
|
|
|||
|
glMatrixMode(GL_MODELVIEW);
|
|||
|
glLoadIdentity();
|
|||
|
|
|||
|
glMatrixMode(GL_PROJECTION);
|
|||
|
glLoadIdentity();
|
|||
|
glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
|
|||
|
}
|
|||
|
|
|||
|
void initCudaBuffers() {
|
|||
|
unsigned int size = width * height * sizeof(unsigned int);
|
|||
|
|
|||
|
// allocate device memory
|
|||
|
checkCudaErrors(cudaMalloc((void **)&d_img, size));
|
|||
|
checkCudaErrors(cudaMalloc((void **)&d_temp, size));
|
|||
|
|
|||
|
checkCudaErrors(cudaMemcpy(d_img, h_img, size, cudaMemcpyHostToDevice));
|
|||
|
|
|||
|
sdkCreateTimer(&timer);
|
|||
|
}
|
|||
|
|
|||
|
void initGLBuffers() {
|
|||
|
// create pixel buffer object to store final image
|
|||
|
glGenBuffers(1, &pbo);
|
|||
|
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
|
|||
|
glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, width * height * sizeof(GLubyte) * 4,
|
|||
|
h_img, GL_STREAM_DRAW_ARB);
|
|||
|
|
|||
|
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
|
|||
|
checkCudaErrors(cudaGraphicsGLRegisterBuffer(
|
|||
|
&cuda_vbo_resource, pbo, cudaGraphicsRegisterFlagsWriteDiscard));
|
|||
|
|
|||
|
// create texture for display
|
|||
|
glGenTextures(1, &texid);
|
|||
|
glBindTexture(GL_TEXTURE_2D, texid);
|
|||
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA,
|
|||
|
GL_UNSIGNED_BYTE, NULL);
|
|||
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|||
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|||
|
glBindTexture(GL_TEXTURE_2D, 0);
|
|||
|
}
|
|||
|
|
|||
|
void initGL(int *argc, char **argv) {
|
|||
|
glutInit(argc, argv);
|
|||
|
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
|
|||
|
glutInitWindowSize(width, height);
|
|||
|
glutCreateWindow(sSDKsample);
|
|||
|
glutDisplayFunc(display);
|
|||
|
glutKeyboardFunc(keyboard);
|
|||
|
glutReshapeFunc(reshape);
|
|||
|
glutIdleFunc(idle);
|
|||
|
|
|||
|
#if defined(__APPLE__) || defined(MACOSX)
|
|||
|
atexit(cleanup);
|
|||
|
#else
|
|||
|
glutCloseFunc(cleanup);
|
|||
|
#endif
|
|||
|
|
|||
|
printf("Press '+' and '-' to change filter width\n");
|
|||
|
printf("0, 1, 2 - change filter order\n");
|
|||
|
|
|||
|
if (!isGLVersionSupported(2, 0) ||
|
|||
|
!areGLExtensionsSupported(
|
|||
|
"GL_ARB_vertex_buffer_object GL_ARB_pixel_buffer_object")) {
|
|||
|
fprintf(stderr, "Required OpenGL extensions missing.");
|
|||
|
exit(EXIT_FAILURE);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void benchmark(int iterations) {
|
|||
|
// allocate memory for result
|
|||
|
unsigned int *d_result;
|
|||
|
unsigned int size = width * height * sizeof(unsigned int);
|
|||
|
checkCudaErrors(cudaMalloc((void **)&d_result, size));
|
|||
|
|
|||
|
// warm-up
|
|||
|
gaussianFilterRGBA(d_img, d_result, d_temp, width, height, sigma, order,
|
|||
|
nthreads);
|
|||
|
|
|||
|
checkCudaErrors(cudaDeviceSynchronize());
|
|||
|
sdkStartTimer(&timer);
|
|||
|
|
|||
|
// execute the kernel
|
|||
|
for (int i = 0; i < iterations; i++) {
|
|||
|
gaussianFilterRGBA(d_img, d_result, d_temp, width, height, sigma, order,
|
|||
|
nthreads);
|
|||
|
}
|
|||
|
|
|||
|
checkCudaErrors(cudaDeviceSynchronize());
|
|||
|
sdkStopTimer(&timer);
|
|||
|
|
|||
|
// check if kernel execution generated an error
|
|||
|
getLastCudaError("Kernel execution failed");
|
|||
|
|
|||
|
printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer));
|
|||
|
printf("%.2f Mpixels/sec\n",
|
|||
|
(width * height * iterations / (sdkGetTimerValue(&timer) / 1000.0f)) /
|
|||
|
1e6);
|
|||
|
|
|||
|
checkCudaErrors(cudaFree(d_result));
|
|||
|
}
|
|||
|
|
|||
|
bool runSingleTest(const char *ref_file, const char *exec_path) {
|
|||
|
// allocate memory for result
|
|||
|
int nTotalErrors = 0;
|
|||
|
unsigned int *d_result;
|
|||
|
unsigned int size = width * height * sizeof(unsigned int);
|
|||
|
checkCudaErrors(cudaMalloc((void **)&d_result, size));
|
|||
|
|
|||
|
// warm-up
|
|||
|
gaussianFilterRGBA(d_img, d_result, d_temp, width, height, sigma, order,
|
|||
|
nthreads);
|
|||
|
|
|||
|
checkCudaErrors(cudaDeviceSynchronize());
|
|||
|
sdkStartTimer(&timer);
|
|||
|
|
|||
|
gaussianFilterRGBA(d_img, d_result, d_temp, width, height, sigma, order,
|
|||
|
nthreads);
|
|||
|
checkCudaErrors(cudaDeviceSynchronize());
|
|||
|
getLastCudaError("Kernel execution failed");
|
|||
|
sdkStopTimer(&timer);
|
|||
|
|
|||
|
unsigned char *h_result = (unsigned char *)malloc(width * height * 4);
|
|||
|
checkCudaErrors(cudaMemcpy(h_result, d_result, width * height * 4,
|
|||
|
cudaMemcpyDeviceToHost));
|
|||
|
|
|||
|
char dump_file[1024];
|
|||
|
sprintf(dump_file, "lena_%02d.ppm", (int)sigma);
|
|||
|
sdkSavePPM4ub(dump_file, h_result, width, height);
|
|||
|
|
|||
|
if (!sdkComparePPM(dump_file, sdkFindFilePath(ref_file, exec_path),
|
|||
|
MAX_EPSILON_ERROR, THRESHOLD, false)) {
|
|||
|
nTotalErrors++;
|
|||
|
}
|
|||
|
|
|||
|
printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer));
|
|||
|
printf("%.2f Mpixels/sec\n",
|
|||
|
(width * height / (sdkGetTimerValue(&timer) / 1000.0f)) / 1e6);
|
|||
|
|
|||
|
checkCudaErrors(cudaFree(d_result));
|
|||
|
free(h_result);
|
|||
|
|
|||
|
printf("Summary: %d errors!\n", nTotalErrors);
|
|||
|
|
|||
|
printf(nTotalErrors == 0 ? "Test passed\n" : "Test failed!\n");
|
|||
|
return (nTotalErrors == 0);
|
|||
|
}
|
|||
|
|
|||
|
////////////////////////////////////////////////////////////////////////////////
|
|||
|
// Program main
|
|||
|
////////////////////////////////////////////////////////////////////////////////
|
|||
|
int main(int argc, char **argv) {
|
|||
|
pArgc = &argc;
|
|||
|
pArgv = argv;
|
|||
|
char *ref_file = NULL;
|
|||
|
|
|||
|
#if defined(__linux__)
|
|||
|
setenv("DISPLAY", ":0", 0);
|
|||
|
#endif
|
|||
|
|
|||
|
printf("%s Starting...\n\n", sSDKsample);
|
|||
|
|
|||
|
printf(
|
|||
|
"NOTE: The CUDA Samples are not meant for performance measurements. "
|
|||
|
"Results may vary when GPU Boost is enabled.\n\n");
|
|||
|
|
|||
|
// use command-line specified CUDA device, otherwise use device with highest
|
|||
|
// Gflops/s
|
|||
|
if (argc > 1) {
|
|||
|
if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
|
|||
|
getCmdLineArgumentString(argc, (const char **)argv, "file", &ref_file);
|
|||
|
fpsLimit = frameCheckNumber;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Get the path of the filename
|
|||
|
char *filename;
|
|||
|
|
|||
|
if (getCmdLineArgumentString(argc, (const char **)argv, "image", &filename)) {
|
|||
|
image_filename = filename;
|
|||
|
}
|
|||
|
|
|||
|
// load image
|
|||
|
char *image_path = sdkFindFilePath(image_filename, argv[0]);
|
|||
|
|
|||
|
if (image_path == NULL) {
|
|||
|
fprintf(stderr, "Error unable to find and load image file: '%s'\n",
|
|||
|
image_filename);
|
|||
|
exit(EXIT_FAILURE);
|
|||
|
}
|
|||
|
|
|||
|
sdkLoadPPM4ub(image_path, (unsigned char **)&h_img, &width, &height);
|
|||
|
|
|||
|
if (!h_img) {
|
|||
|
printf("Error unable to load PPM file: '%s'\n", image_path);
|
|||
|
exit(EXIT_FAILURE);
|
|||
|
}
|
|||
|
|
|||
|
printf("Loaded '%s', %d x %d pixels\n", image_path, width, height);
|
|||
|
|
|||
|
if (checkCmdLineFlag(argc, (const char **)argv, "threads")) {
|
|||
|
nthreads = getCmdLineArgumentInt(argc, (const char **)argv, "threads");
|
|||
|
}
|
|||
|
|
|||
|
if (checkCmdLineFlag(argc, (const char **)argv, "sigma")) {
|
|||
|
sigma = getCmdLineArgumentFloat(argc, (const char **)argv, "sigma");
|
|||
|
}
|
|||
|
|
|||
|
runBenchmark = checkCmdLineFlag(argc, (const char **)argv, "benchmark");
|
|||
|
|
|||
|
int device;
|
|||
|
struct cudaDeviceProp prop;
|
|||
|
cudaGetDevice(&device);
|
|||
|
cudaGetDeviceProperties(&prop, device);
|
|||
|
|
|||
|
if (!strncmp("Tesla", prop.name, 5)) {
|
|||
|
printf(
|
|||
|
"Tesla card detected, running the test in benchmark mode (no OpenGL "
|
|||
|
"display)\n");
|
|||
|
// runBenchmark = true;
|
|||
|
runBenchmark = true;
|
|||
|
}
|
|||
|
|
|||
|
// Benchmark or AutoTest mode detected, no OpenGL
|
|||
|
if (runBenchmark == true || ref_file != NULL) {
|
|||
|
findCudaDevice(argc, (const char **)argv);
|
|||
|
} else {
|
|||
|
// First initialize OpenGL context, and then select CUDA device.
|
|||
|
initGL(&argc, argv);
|
|||
|
findCudaDevice(argc, (const char **)argv);
|
|||
|
}
|
|||
|
|
|||
|
initCudaBuffers();
|
|||
|
|
|||
|
if (ref_file) {
|
|||
|
printf("(Automated Testing)\n");
|
|||
|
bool testPassed = runSingleTest(ref_file, argv[0]);
|
|||
|
|
|||
|
cleanup();
|
|||
|
exit(testPassed ? EXIT_SUCCESS : EXIT_FAILURE);
|
|||
|
}
|
|||
|
|
|||
|
if (runBenchmark) {
|
|||
|
printf("(Run Benchmark)\n");
|
|||
|
benchmark(100);
|
|||
|
|
|||
|
cleanup();
|
|||
|
exit(EXIT_SUCCESS);
|
|||
|
}
|
|||
|
|
|||
|
initGLBuffers();
|
|||
|
glutMainLoop();
|
|||
|
|
|||
|
exit(EXIT_SUCCESS);
|
|||
|
}
|