cuda-samples/Samples/dct8x8/dct8x8_kernel1.cuh

235 lines
9.4 KiB
Plaintext
Raw Normal View History

2021-10-21 19:04:49 +08:00
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
**************************************************************************
* \file dct8x8_kernel1.cu
* \brief Contains 1st CUDA implementations of DCT, IDCT and quantization
*routines,
* used in JPEG internal data processing. Device code.
*
* This code implements first CUDA versions of forward and inverse Discrete
*Cosine
* Transform to blocks of image pixels (of 8x8 size), as in JPEG standard. The
*data
* processing is done using floating point representation.
* The routine that performs quantization of coefficients can be found in
* dct8x8_kernel_quantization.cu file.
*/
#pragma once
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include "Common.h"
/**
* This unitary matrix performs discrete cosine transform of rows of the matrix
* to the left
*/
__constant__ float DCTv8matrix[] = {
0.3535533905932738f, 0.4903926402016152f, 0.4619397662556434f, 0.4157348061512726f, 0.3535533905932738f, 0.2777851165098011f, 0.1913417161825449f, 0.0975451610080642f,
0.3535533905932738f, 0.4157348061512726f, 0.1913417161825449f, -0.0975451610080641f, -0.3535533905932737f, -0.4903926402016152f, -0.4619397662556434f, -0.2777851165098011f,
0.3535533905932738f, 0.2777851165098011f, -0.1913417161825449f, -0.4903926402016152f, -0.3535533905932738f, 0.0975451610080642f, 0.4619397662556433f, 0.4157348061512727f,
0.3535533905932738f, 0.0975451610080642f, -0.4619397662556434f, -0.2777851165098011f, 0.3535533905932737f, 0.4157348061512727f, -0.1913417161825450f, -0.4903926402016153f,
0.3535533905932738f, -0.0975451610080641f, -0.4619397662556434f, 0.2777851165098009f, 0.3535533905932738f, -0.4157348061512726f, -0.1913417161825453f, 0.4903926402016152f,
0.3535533905932738f, -0.2777851165098010f, -0.1913417161825452f, 0.4903926402016153f, -0.3535533905932733f, -0.0975451610080649f, 0.4619397662556437f, -0.4157348061512720f,
0.3535533905932738f, -0.4157348061512727f, 0.1913417161825450f, 0.0975451610080640f, -0.3535533905932736f, 0.4903926402016152f, -0.4619397662556435f, 0.2777851165098022f,
0.3535533905932738f, -0.4903926402016152f, 0.4619397662556433f, -0.4157348061512721f, 0.3535533905932733f, -0.2777851165098008f, 0.1913417161825431f, -0.0975451610080625f
};
// Temporary blocks
__shared__ float CurBlockLocal1[BLOCK_SIZE2];
__shared__ float CurBlockLocal2[BLOCK_SIZE2];
/**
**************************************************************************
* Performs 1st implementation of 8x8 block-wise Forward Discrete Cosine
*Transform of the given
* image plane and outputs result to the array of coefficients.
*
* \param Dst [OUT] - Coefficients plane
* \param ImgWidth [IN] - Stride of Dst
* \param OffsetXBlocks [IN] - Offset along X in blocks from which to perform
*processing
* \param OffsetYBlocks [IN] - Offset along Y in blocks from which to perform
*processing
*
* \return None
*/
__global__ void CUDAkernel1DCT(float *Dst, int ImgWidth, int OffsetXBlocks,
int OffsetYBlocks, cudaTextureObject_t TexSrc) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
// Block index
const int bx = blockIdx.x + OffsetXBlocks;
const int by = blockIdx.y + OffsetYBlocks;
// Thread index (current coefficient)
const int tx = threadIdx.x;
const int ty = threadIdx.y;
// Texture coordinates
const float tex_x = (float)((bx << BLOCK_SIZE_LOG2) + tx) + 0.5f;
const float tex_y = (float)((by << BLOCK_SIZE_LOG2) + ty) + 0.5f;
// copy current image pixel to the first block
CurBlockLocal1[(ty << BLOCK_SIZE_LOG2) + tx] =
tex2D<float>(TexSrc, tex_x, tex_y);
// synchronize threads to make sure the block is copied
cg::sync(cta);
// calculate the multiplication of DCTv8matrixT * A and place it in the second
// block
float curelem = 0;
int DCTv8matrixIndex = 0 * BLOCK_SIZE + ty;
int CurBlockLocal1Index = 0 * BLOCK_SIZE + tx;
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; i++) {
curelem +=
DCTv8matrix[DCTv8matrixIndex] * CurBlockLocal1[CurBlockLocal1Index];
DCTv8matrixIndex += BLOCK_SIZE;
CurBlockLocal1Index += BLOCK_SIZE;
}
CurBlockLocal2[(ty << BLOCK_SIZE_LOG2) + tx] = curelem;
// synchronize threads to make sure the first 2 matrices are multiplied and
// the result is stored in the second block
cg::sync(cta);
// calculate the multiplication of (DCTv8matrixT * A) * DCTv8matrix and place
// it in the first block
curelem = 0;
int CurBlockLocal2Index = (ty << BLOCK_SIZE_LOG2) + 0;
DCTv8matrixIndex = 0 * BLOCK_SIZE + tx;
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; i++) {
curelem +=
CurBlockLocal2[CurBlockLocal2Index] * DCTv8matrix[DCTv8matrixIndex];
CurBlockLocal2Index += 1;
DCTv8matrixIndex += BLOCK_SIZE;
}
CurBlockLocal1[(ty << BLOCK_SIZE_LOG2) + tx] = curelem;
// synchronize threads to make sure the matrices are multiplied and the result
// is stored back in the first block
cg::sync(cta);
// copy current coefficient to its place in the result array
Dst[FMUL(((by << BLOCK_SIZE_LOG2) + ty), ImgWidth) +
((bx << BLOCK_SIZE_LOG2) + tx)] =
CurBlockLocal1[(ty << BLOCK_SIZE_LOG2) + tx];
}
/**
**************************************************************************
* Performs 1st implementation of 8x8 block-wise Inverse Discrete Cosine
*Transform of the given
* DCT coefficients plane and outputs result to the image array
*
* \param Dst [OUT] - Image plane
* \param ImgWidth [IN] - Stride of Dst
* \param OffsetXBlocks [IN] - Offset along X in blocks from which to perform
*processing
* \param OffsetYBlocks [IN] - Offset along Y in blocks from which to perform
*processing
*
* \return None
*/
__global__ void CUDAkernel1IDCT(float *Dst, int ImgWidth, int OffsetXBlocks,
int OffsetYBlocks, cudaTextureObject_t TexSrc) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
// Block index
int bx = blockIdx.x + OffsetXBlocks;
int by = blockIdx.y + OffsetYBlocks;
// Thread index (current image pixel)
int tx = threadIdx.x;
int ty = threadIdx.y;
// Texture coordinates
const float tex_x = (float)((bx << BLOCK_SIZE_LOG2) + tx) + 0.5f;
const float tex_y = (float)((by << BLOCK_SIZE_LOG2) + ty) + 0.5f;
// copy current image pixel to the first block
CurBlockLocal1[(ty << BLOCK_SIZE_LOG2) + tx] =
tex2D<float>(TexSrc, tex_x, tex_y);
// synchronize threads to make sure the block is copied
cg::sync(cta);
// calculate the multiplication of DCTv8matrix * A and place it in the second
// block
float curelem = 0;
int DCTv8matrixIndex = (ty << BLOCK_SIZE_LOG2) + 0;
int CurBlockLocal1Index = 0 * BLOCK_SIZE + tx;
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; i++) {
curelem +=
DCTv8matrix[DCTv8matrixIndex] * CurBlockLocal1[CurBlockLocal1Index];
DCTv8matrixIndex += 1;
CurBlockLocal1Index += BLOCK_SIZE;
}
CurBlockLocal2[(ty << BLOCK_SIZE_LOG2) + tx] = curelem;
// synchronize threads to make sure the first 2 matrices are multiplied and
// the result is stored in the second block
cg::sync(cta);
// calculate the multiplication of (DCTv8matrix * A) * DCTv8matrixT and place
// it in the first block
curelem = 0;
int CurBlockLocal2Index = (ty << BLOCK_SIZE_LOG2) + 0;
DCTv8matrixIndex = (tx << BLOCK_SIZE_LOG2) + 0;
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; i++) {
curelem +=
CurBlockLocal2[CurBlockLocal2Index] * DCTv8matrix[DCTv8matrixIndex];
CurBlockLocal2Index += 1;
DCTv8matrixIndex += 1;
}
CurBlockLocal1[(ty << BLOCK_SIZE_LOG2) + tx] = curelem;
// synchronize threads to make sure the matrices are multiplied and the result
// is stored back in the first block
cg::sync(cta);
// copy current coefficient to its place in the result array
Dst[FMUL(((by << BLOCK_SIZE_LOG2) + ty), ImgWidth) +
((bx << BLOCK_SIZE_LOG2) + tx)] =
CurBlockLocal1[(ty << BLOCK_SIZE_LOG2) + tx];
}