mvp v1.1 save
This commit is contained in:
parent
aff97f8643
commit
c405adc4fc
3
.gitignore
vendored
3
.gitignore
vendored
@ -1,3 +1,4 @@
|
||||
verl/
|
||||
skypilot-ssh-test/
|
||||
ray_in_docker/
|
||||
ray_in_docker/
|
||||
__pycache__/
|
||||
|
||||
34
specs/mvp/milestones.md
Normal file
34
specs/mvp/milestones.md
Normal file
@ -0,0 +1,34 @@
|
||||
|
||||
# milestones
|
||||
|
||||
通过以下几个里程碑来梳理和分析确认可行性,最终目标是产出一套基于Native Ray集群(无k8s底座)的verl 训练平台,支持多用户,运行各类verl任务,提高整体集群的资源利用效率,并且能够通过监测系统进行观察和资源统计,监控报警。未来形成运维SOP后,接入运维智能体,执行自动化运维。
|
||||
- Workload
|
||||
- ppo on ray
|
||||
- grpo on ray
|
||||
- sft on ray 可行性
|
||||
- model serving on ray
|
||||
- customize code 自定义代码,任意verl example 提交代码
|
||||
- 自定义reward function
|
||||
- 同时多verl版本支持,同时跑不同的ray任务,但是使用不同版本的verl,甚至是用户魔改版本
|
||||
- Ray Job管理
|
||||
- 通过python api提交,而不是通过ray cli提交
|
||||
- 任务排队机制。无优先级,多个pending job谁先满足资源就谁先执行。
|
||||
- 【确认支持】gang scheduling (all or nothing), 指定好trainer.nnodes和trainer.n_gpus_per_node参数,不满足就pending。
|
||||
- 无配额管理、公平调度等特性。
|
||||
- Ray本身不支持任务超时参数,需要单独job监控,发现超时才停止。
|
||||
- Pipeline管理【高级, 暂不实现】
|
||||
- 提供对Ray Job进一步封装,串联多个Ray Job,自动完成训练,模型合并等job串联
|
||||
- 可观测性 Observability
|
||||
- 测试本地部署 weight and bias server 可行性,如何集成现有job流程
|
||||
- 测试部署 prometheus & grafana,对ray节点进行监测
|
||||
- job监控,哪些job使用了多少资源,跑了多长时间,资源利用率是否充分,是否空占着GPU
|
||||
- 数据、模型存储管理
|
||||
- shared dataset管理:所有用户共享的hf数据集
|
||||
- hf 模型管理:所有用户共享的hf 基座模型库
|
||||
- user dataset 管理: 用户独自的数据集管理
|
||||
- user 模型管理:用户独自的模型管理,保存训练好的模型
|
||||
- job 作业数据管理,作业产出物,临时目录数据
|
||||
- user management:用户可以通过统一界面来管理自己是user dataset/model space和自己运行的job的临时目录,从而灵活组织任务流水线,提供灵活的文件查看方式
|
||||
- 网络
|
||||
- 确认是否支持IB(H100环境),以及RoCEv2(H20环境),需要怎样配置
|
||||
|
||||
348
specs/mvp/mvp_roadmap.md
Normal file
348
specs/mvp/mvp_roadmap.md
Normal file
@ -0,0 +1,348 @@
|
||||
# MVP Roadmap(V1 → V2 → … → 训练平台)
|
||||
|
||||
本文档在 `specs/mvp/milestones.md` 的草稿基础上做**扩展与细化**:把目标拆成可迭代的版本(MVP v1/v2/…),保证每个版本都能**独立运行、可验证验收**,并且在上一版本基础上演进。
|
||||
|
||||
> 总目标(North Star):产出一套**基于 Native Ray 集群(无 K8s 底座)**的训练平台,面向多用户,支持 `verl` 各类训练/评测/Serving 工作负载,提升集群利用率,并通过可观测系统实现资源统计、监控告警,最终形成运维 SOP 并可接入运维智能体做自动化运维。
|
||||
|
||||
---
|
||||
|
||||
## 0. 关键原则(贯穿所有版本)
|
||||
|
||||
1) **版本可独立运行**:每个版本都能从“空环境”按文档跑起来(不依赖未来能力)。
|
||||
2) **验收可客观验证**:每个里程碑必须有明确的 DoD(Definition of Done)与可复现步骤。
|
||||
3) **强制产物落盘**:模型/数据/日志/ckpt 必须可追踪、可复用、可审计(基于共享存储/NFS)。
|
||||
4) **Head 不参与计算**:Head 只承担控制面(GCS/Dashboard/Job server),避免训练抢占控制面资源。
|
||||
5) **按 submission id 组织作业**:作业输出目录与 Ray submission id 绑定,方便检索、回收、归档。
|
||||
6) **“先把 RL 跑稳”,再扩 workload**:先 PPO(已验证),再 GRPO/SFT/Serving。
|
||||
|
||||
---
|
||||
|
||||
## 0.1 里程碑总览(建议交付顺序)
|
||||
|
||||
| 版本 | 定位 | 关键交付 | 核心验收点 |
|
||||
|---|---|---|---|
|
||||
| v1 | 可复现实验闭环 | Ray 集群 + PPO 跑通 + 持久化 | driver 不在 head;产物落盘 |
|
||||
| v1.1 | 实验工程化 | JobSpec 模板 + 新增 1 个 workload | 可回归、可定位、可扩展 |
|
||||
| v2.0 | 服务化入口 | API + Ray Jobs SDK | API 提交/查询/停止可用 |
|
||||
| v2.1 | 节点纳管 | SSH 注入 + 资源池/标签 | 节点上线/下线、gang 约束 |
|
||||
| v3.0 | 平台雏形 | 队列 + 超时 + 最小多用户 | pending→running 自动调度 |
|
||||
| v3.1 | 可扩展平台 | 自定义代码/reward + 多版本 | 多版本并存、插件可用 |
|
||||
| v4.0 | 可运营平台 | Prom/Grafana + W&B | 资源核算/告警/归档 |
|
||||
| v4.1 | 可交接平台 | SOP + 自动化运维接口 | 非开发可按 SOP 运维 |
|
||||
| v5.0 | 长期形态 | Serving + Pipeline | 训练→发布推理闭环 |
|
||||
|
||||
## 1. 当前基线:MVP v1(已完成/已验证)
|
||||
|
||||
### 1.1 目标
|
||||
|
||||
在单机(或同一宿主机)用 3 个容器跑通:
|
||||
|
||||
- Ray head(无 GPU,CPU=0/GPU=0)
|
||||
- 2 个 Ray worker(每个 4 GPU)
|
||||
- 通过 **head 上的 `ray job submit`** 提交 `verl` PPO(`total_epochs=1`)
|
||||
- 通过 **entrypoint 自定义资源**强制 driver 在 worker 上
|
||||
- 数据/模型/日志/ckpt 全部持久化
|
||||
|
||||
### 1.2 交付物(repo 中已存在)
|
||||
|
||||
- 脚本与 compose:`src/mvp/v1/`
|
||||
- 行动与验收文档:`specs/mvp/v1/v1_action.md`
|
||||
- 共享目录约定:`shared/datasets`、`shared/hf`、`shared/jobs` 等(与 NFS 对齐)
|
||||
|
||||
### 1.3 验收口径(摘要)
|
||||
|
||||
- `ray job list` 的 `driver_info.node_ip_address` ∈ worker IP,且 ≠ head IP
|
||||
- 训练输出落在 `/mnt/shared/jobs/<submission_id>/...`
|
||||
- checkpoint 按 `save_freq` 产生(避免爆磁盘)
|
||||
|
||||
---
|
||||
|
||||
## 2. MVP v1.1(Hardening + 多 workload 可行性验证)
|
||||
|
||||
> 目标:把 v1 从“实验脚本”升级成“可长期回归的最小系统”,并验证更多 workload 的可行性边界。
|
||||
|
||||
### 2.1 主要能力
|
||||
|
||||
- Workload 扩展(可选顺序):
|
||||
- PPO(回归金标)
|
||||
- GRPO on Ray(可运行验证)
|
||||
- SFT on Ray(可运行验证:`llamafactory` 或 `verl` 相关 SFT 路径)
|
||||
- 作业模板化(最小实现):
|
||||
- 统一 JobSpec(YAML/JSON)描述:workload 类型、资源(nnodes/n_gpus_per_node)、数据、模型、输出目录、超时
|
||||
- 仍然用 `ray job submit`,但把 entrypoint 组装逻辑标准化
|
||||
- checkpoint 策略与磁盘保护:
|
||||
- 默认 `save_freq` ≥ 10(或按训练总 steps 的比例)
|
||||
- 明确保留策略(至少提供“保留最后 N 个 ckpt”的配置建议/脚本)
|
||||
- “失败可定位”:
|
||||
- 统一收敛日志入口(Ray job logs + hydra 日志目录 + 关键参数快照)
|
||||
- 失败时能定位:是资源不足 / NCCL / 数据 / 模型 / 配置错误
|
||||
|
||||
### 2.2 验收(DoD)
|
||||
|
||||
- 同一套脚本在同一台机器能连续跑 3 次 PPO 回归,产物目录不互相覆盖
|
||||
- 至少新增 1 个 workload(GRPO 或 SFT)可以跑通 “启动→训练→落盘” 闭环
|
||||
- 作业目录内包含:
|
||||
- `config/submit_cmd.txt`(或 job spec 快照)
|
||||
- `logs/`(可追踪)
|
||||
- `checkpoints/`(按策略生成)
|
||||
|
||||
---
|
||||
|
||||
## 3. MVP v2.0(Control Plane 服务化:API + Ray Jobs SDK)
|
||||
|
||||
> 目标:从“人跑脚本”升级为“服务提交任务”。依然是 Native Ray 集群,但引入一个最小控制平面服务。
|
||||
|
||||
### 3.1 系统形态
|
||||
|
||||
- Control Plane(建议部署在 head/CPU 机器):
|
||||
- FastAPI 服务(REST)
|
||||
- Job 管理:用 Ray Jobs **Python SDK** 提交/查询/停止(不再依赖 CLI 文本解析)
|
||||
- 节点视图:读取 Ray state(nodes, actors, placement groups)
|
||||
- Data Plane:
|
||||
- 仍然是预先启动的 worker 节点加入集群(先不做 SSH 动态纳管也可)
|
||||
|
||||
### 3.2 API(MVP 级别)
|
||||
|
||||
- `POST /v1/jobs`:提交 JobSpec(ppo/grpo/sft)
|
||||
- `GET /v1/jobs`:列表(含状态、资源、开始/结束时间)
|
||||
- `GET /v1/jobs/{id}`:详情(含输出目录、driver node)
|
||||
- `POST /v1/jobs/{id}:stop`:停止作业
|
||||
|
||||
### 3.3 验收(DoD)
|
||||
|
||||
- API 提交 PPO,返回 submission id;输出目录为 `/mnt/shared/jobs/<submission_id>/...`
|
||||
- API 查询 job 状态与 driver node(必须是 worker)
|
||||
- 停止 job 后,资源释放、状态可见
|
||||
|
||||
---
|
||||
|
||||
## 4. MVP v2.1(SSH 纳管 + 资源池 + Gang 约束)
|
||||
|
||||
> 目标:对齐你草稿里“SSH 纳管”的约束与需求:控制面能纳管 GPU 节点,形成可运营的资源池。
|
||||
|
||||
### 4.1 节点纳管(SSH Provisioner)
|
||||
|
||||
- 控制面保存 NodeSpec(ip/user/port/labels/gpu_count)
|
||||
- 通过 SSH 执行:
|
||||
- `ray start --address=<head>:6379 --resources=...`
|
||||
- `ray stop`(drain/下线)
|
||||
- 维护节点状态机:`pending → online → draining → offline`
|
||||
|
||||
### 4.2 资源池与 gang(All-or-nothing)
|
||||
|
||||
- 资源池最小模型:
|
||||
- pool 标签(如 `pool_a`、`h20`、`ib_domain_1`)
|
||||
- 提交 job 时指定 pool 约束
|
||||
- Gang 约束(MVP 实现方式):
|
||||
- job spec 明确 `trainer.nnodes` + `trainer.n_gpus_per_node`
|
||||
- 提交前检查 Ray 可用资源是否满足,不满足则进入 pending 队列(见 v3.0)
|
||||
|
||||
### 4.3 验收(DoD)
|
||||
|
||||
- 通过 API 注册 2 个 worker(SSH 注入 ray start)后,`ray status` 可见节点上线
|
||||
- 通过 API 下线节点,节点被标记不可调度且不再分配新 job
|
||||
- gang 不满足时 job 不提交(或提交后一直 pending),满足后可运行
|
||||
|
||||
---
|
||||
|
||||
## 5. MVP v3.0(调度与多用户:队列 + 超时 + 最小权限)
|
||||
|
||||
> 目标:平台开始“像个平台”:多用户、队列、超时、审计。仍然不做复杂配额/公平调度。
|
||||
|
||||
### 5.1 作业队列(简单但可用)
|
||||
|
||||
- FIFO 队列:无优先级
|
||||
- “资源满足就调度”:谁先满足谁先跑(可接受非严格 FIFO)
|
||||
- job 超时:Ray 原生不支持统一 timeout(草稿已指出),因此控制面需:
|
||||
- 记录 start_time
|
||||
- 定期扫描超时 job → `stop`
|
||||
|
||||
### 5.2 多用户最小闭环
|
||||
|
||||
- 认证(MVP):token 或 basic auth(先不做复杂 RBAC)
|
||||
- 归属与隔离(文件层):
|
||||
- `/mnt/shared/users/<user>/datasets/`
|
||||
- `/mnt/shared/users/<user>/models/`
|
||||
- `/mnt/shared/jobs/<submission_id>/` 记录 user/metadata
|
||||
|
||||
### 5.3 验收(DoD)
|
||||
|
||||
- 2 个用户可各自提交 job,能看到自己的 job 列表与输出目录
|
||||
- 超时策略可触发(模拟短 timeout),job 被停止且状态标记为 timeout
|
||||
- 队列在资源不足时保持 pending,资源释放后自动运行
|
||||
|
||||
---
|
||||
|
||||
## 6. MVP v3.1(可扩展性:自定义代码/Reward、多版本 VERL)
|
||||
|
||||
> 目标:把“平台内置 workload”升级成“用户可提交自定义代码与 reward”,并支持多版本并存。
|
||||
|
||||
### 6.1 自定义代码提交(最小实现)
|
||||
|
||||
两种方式二选一(建议先做 A):
|
||||
|
||||
- A:`working_dir` 指向 NFS 上的代码快照目录(用户自己准备/上传)
|
||||
- B:上传 zip(控制面落到 NFS 并解压为 code snapshot)
|
||||
|
||||
### 6.2 多版本 VERL 并存
|
||||
|
||||
约束前提:**基础镜像保持同一个**(生产环境容器由算力平台创建时已固定镜像标签)。
|
||||
|
||||
目标:在同一 Ray 集群内,不同 job 可以使用不同版本的 `verl`(例如不同分支/commit 或用户魔改版)。
|
||||
|
||||
已确认优先方案(A):**必须通过 Ray Job 的 `runtime_env.env_vars` 透传 `PYTHONPATH`**,让 job 粒度优先 import 指定代码快照。
|
||||
|
||||
建议方案(以 NFS 为中心,最小可行实现):
|
||||
|
||||
- 在共享存储上以“不可变快照”的方式存放代码版本(推荐 commit hash 命名):
|
||||
- `${SHARED_ROOT}/common/code/verl/<commit>/...`
|
||||
- `${SHARED_ROOT}/users/<user>/code/verl/<commit>/...`(用户魔改版)
|
||||
- JobSpec 增加 `code_path`(指向上述目录),控制面在提交 job 时注入(必须走 runtime_env):
|
||||
- `runtime_env.env_vars.PYTHONPATH = "<code_path>:$PYTHONPATH"`(把 code_path 放最前面,确保 import 优先级)
|
||||
|
||||
示例(概念性,实际以 `${SHARED_ROOT}` 为准):
|
||||
|
||||
```bash
|
||||
CODE_PATH="${SHARED_ROOT}/common/code/verl/<commit>"
|
||||
|
||||
ray job submit \
|
||||
--address="http://127.0.0.1:8265" \
|
||||
--submission-id="<submission_id>" \
|
||||
--runtime-env-json='{"env_vars": {"PYTHONPATH": "'"${CODE_PATH}"':$PYTHONPATH"}}' \
|
||||
-- \
|
||||
python3 -m verl.trainer.main_ppo ...
|
||||
```
|
||||
|
||||
需要验证的关键点(作为 v3.1 的 DoD 之一):
|
||||
|
||||
- 同时运行两个 job:
|
||||
- jobA 使用 `<commitA>`,jobB 使用 `<commitB>`
|
||||
- 互不影响,且各自训练/日志/ckpt 正常
|
||||
- job 粒度是否能做到“依赖隔离”(至少做到 `verl` 版本隔离;第三方依赖冲突可先假设镜像内一致)
|
||||
|
||||
> 备注:当前 v1 的做法是容器内全局 `pip install -e /workspace/verl`,这会让所有 job 默认使用同一份 `verl`。要实现多版本并存,必须让 job 的 import 优先使用 `code_path`(或为每个 job 单独创建 venv/安装 wheel;后者更重,建议后置)。
|
||||
|
||||
### 6.3 自定义 reward function
|
||||
|
||||
- JobSpec 支持 `reward_fn_path`(Python 模块路径)
|
||||
- `reward_fn_path` 可指向共享存储中用户自定义代码目录(例如 `${SHARED_ROOT}/users/<user>/code/...`)
|
||||
- 约束:代码必须在 job runtime 中可 import(由 `working_dir`/`PYTHONPATH` 或 runtime_env 保障)
|
||||
- 控制面校验模块可导入(basic lint/安全白名单可后置)
|
||||
|
||||
### 6.4 验收(DoD)
|
||||
|
||||
- 同时运行两个 job:使用不同的 `verl` 代码版本(或用户魔改版本),互不影响
|
||||
- 用户可在 JobSpec 中替换 reward function 并跑通一个最小训练闭环
|
||||
|
||||
---
|
||||
|
||||
## 7. MVP v4.0(可观测性:Prometheus/Grafana + W&B 集成)
|
||||
|
||||
> 目标:平台可运营:能回答“谁在用多少资源、跑了多久、利用率如何、是否空占 GPU”。
|
||||
|
||||
### 7.1 指标与监控
|
||||
|
||||
- Ray 指标接入 Prometheus(节点/任务/actor)
|
||||
- GPU 指标:nvidia exporter 或 DCGM exporter
|
||||
- Dashboard:Grafana(至少 3 张核心面板)
|
||||
- 集群总 GPU/CPU 使用率、空闲率
|
||||
- 每 job 的 GPU 时间、峰值显存、运行时长
|
||||
- 节点健康(心跳/掉线)与告警
|
||||
|
||||
### 7.2 W&B(或等价)集成验证
|
||||
|
||||
- 最小可行:单机 self-host W&B server 可用性验证
|
||||
- JobSpec 支持启用/关闭 W&B,并传入 project/run name
|
||||
|
||||
### 7.3 验收(DoD)
|
||||
|
||||
- Grafana 上能看到集群与 job 资源视图
|
||||
- 某个 job GPU 利用率异常(模拟)能触发告警规则(邮件/IM/日志即可)
|
||||
- W&B 指标能按 job 维度归档(至少 PPO 能上报)
|
||||
|
||||
---
|
||||
|
||||
## 8. MVP v4.1(运维化:SOP + 自动化运维接口)
|
||||
|
||||
> 目标:把平台变成“可交接”的系统:运维动作标准化,并为智能体留出接口。
|
||||
|
||||
### 8.1 SOP 与自动化入口
|
||||
|
||||
- SOP 文档:
|
||||
- 节点上线/下线
|
||||
- 故障定位(Ray session、Ray job、NCCL、OOM)
|
||||
- 资源回收(停止 job、清理 ckpt)
|
||||
- 自动化接口(最小):
|
||||
- `/v1/ops/drain_node`
|
||||
- `/v1/ops/restart_ray_head`(谨慎:需要保护与权限)
|
||||
- `/v1/ops/cleanup_job_artifacts`
|
||||
|
||||
### 8.2 验收(DoD)
|
||||
|
||||
- 按 SOP,非开发人员可完成一次“节点上线→跑任务→下线→清理”
|
||||
- 自动化接口至少能完成 1 个高频动作(如清理/停止/下线)
|
||||
|
||||
---
|
||||
|
||||
## 9. MVP v5.0(Serving 与 Pipeline,偏长期)
|
||||
|
||||
> 目标:训练-部署一体化:支持 model serving,并在平台内串联训练→评测→发布。
|
||||
|
||||
### 9.1 Serving
|
||||
|
||||
- Ray Serve(或等价)部署模型推理服务
|
||||
- Serving 与训练共用模型库与权限(按 user/project)
|
||||
|
||||
### 9.2 Pipeline(草稿里标为高级)
|
||||
|
||||
- Pipeline 是对多个 job 的封装(训练→merge→eval→publish)
|
||||
- 可先实现最小 DAG(两步串联)作为验证
|
||||
|
||||
### 9.3 验收(DoD)
|
||||
|
||||
- 训练产物一键发布为一个可访问的推理 endpoint
|
||||
- Pipeline 能自动串联并产出最终 artifact(可回滚/可追踪)
|
||||
|
||||
---
|
||||
|
||||
## 10. 并行技术验证(建议尽早做)
|
||||
|
||||
这些属于“跨版本”风险项,建议在 v1.1 ~ v2.0 期间尽早做:
|
||||
|
||||
### 10.1 网络(IB / RoCEv2)
|
||||
|
||||
- 确认环境是否支持 IB(H100)或 RoCEv2(H20)
|
||||
- 跑最小 NCCL 通信验证(all-reduce / bandwidth)
|
||||
- 将必要的 NCCL 环境变量注入到 job runtime_env
|
||||
|
||||
### 10.2 Ray + 多节点容器约束
|
||||
|
||||
- 多容器同宿主机时的 Ray node_ip/临时目录冲突规律(已踩坑,需固化规范)
|
||||
- 端口范围与防火墙策略(Ray worker 端口、dashboard、metrics)
|
||||
|
||||
---
|
||||
|
||||
## 11. 已确认的约束与假设(来自讨论结论)
|
||||
|
||||
这些会直接影响 v2.1(SSH 纳管)与后续多用户/存储设计:
|
||||
|
||||
1) **最终形态仍以“每节点容器”运行**(不是裸机 systemd)。
|
||||
- H20 开发环境:我们可在宿主机用 `docker compose` 自建容器,并通过 SSH 进入容器调试/纳管。
|
||||
- H100 生产环境:容器由算力平台创建/回收;平台侧控制面只能 **SSH 进入这些容器** 做纳管(执行 `ray start/stop`、注入 env 等)。
|
||||
2) **认证**:内部 token 即可(MVP 阶段不对接 SSO)。
|
||||
3) **存储**:只考虑 NFS。
|
||||
- 开发环境:NFS/共享目录可通过宿主机 bind mount 提供给容器。
|
||||
- 生产环境:所有容器挂载相同 NFS,容器内共享根路径为 `/private/`(需要在实现时把“共享根路径”做成可配置项,而不是写死 `/mnt/shared`)。
|
||||
4) **网络拓扑约束**:暂不做按 IB 域/机架/拓扑的强约束调度(第 10.1 仍需验证 IB/RoCE 是否可用与配置方式,但调度不引入拓扑维度)。
|
||||
5) **共享目录分层**:在 `users/<user>/...` 之外增加一个可读写的 `common/` 目录用于共享数据/模型/代码:
|
||||
- `${SHARED_ROOT}/common/datasets/`
|
||||
- `${SHARED_ROOT}/common/models/`
|
||||
- `${SHARED_ROOT}/common/code/`
|
||||
- 权限(MVP):先默认“所有内部 token 用户可读写”,后续再细化只读/受控写。
|
||||
|
||||
---
|
||||
|
||||
## 12. 仍需你确认/讨论的问题(剩余不确定项)
|
||||
|
||||
1) `runtime_env.env_vars` 注入对“子进程/训练框架内部启动进程”的覆盖范围是否足够?
|
||||
- 需要确认 `verl`/`sglang` 等子进程是否继承 driver 的环境变量(通常会继承,但建议在 v3.1 验收时明确验证)。
|
||||
169
specs/mvp/v1.1/mvp_plan.md
Normal file
169
specs/mvp/v1.1/mvp_plan.md
Normal file
@ -0,0 +1,169 @@
|
||||
# MVP v1.1 计划(Hardening + 多 Workload 可行性验证)
|
||||
|
||||
本目录是 `specs/mvp/v1/` 的下一步迭代:在 v1 已经跑通(Ray head + 2 worker,PPO on Ray,持久化落盘)的基础上,把它升级为**可长期回归**的最小系统,并扩展至少一个新 workload 的可行性闭环。
|
||||
|
||||
> v1.1 的目标不是做平台服务化(API/队列/多用户)——那是 v2/v3 的工作;v1.1 聚焦“工程化 + 可行性边界验证 + 可观测/可排障基础”。
|
||||
|
||||
---
|
||||
|
||||
## 1. v1 基线回顾(已完成)
|
||||
|
||||
- 拓扑:1 head(无 GPU,CPU/GPU=0)+ 2 worker(各 4 GPU)
|
||||
- 提交方式:必须用 head 上的 `ray job submit`
|
||||
- driver 调度:通过 `worker_node` 自定义资源 + `--entrypoint-resources` 强制 driver 在 worker
|
||||
- 输出:按 `submission_id` 组织到共享目录(NFS)
|
||||
|
||||
相关实现参考:
|
||||
|
||||
- 脚本:`src/mvp/v1/`
|
||||
- 验收动作:`specs/mvp/v1/v1_action.md`
|
||||
- Roadmap:`specs/mvp/mvp_roadmap.md`
|
||||
|
||||
---
|
||||
|
||||
## 2. v1.1 目标(必须达成)
|
||||
|
||||
### 2.1 工程化(Hardening)
|
||||
|
||||
1) **JobSpec 标准化(最小)**
|
||||
- 把“提交 job 需要的参数”收敛成结构化文件:
|
||||
- Ray 基础配置(YAML):cluster 地址、entrypoint 资源约束、runtime_env 等
|
||||
- 训练 JobSpec(YAML):workload 语义与训练参数
|
||||
- 至少覆盖:`submission_id`、workload 类型、资源需求、共享根路径、模型/数据路径、输出目录、超时、环境变量注入。
|
||||
- v1.1 实现落点(已在 repo 里提供,SDK 方式):
|
||||
- RayConfig 示例:`src/mvp/v1.1/py/configs/dev.yaml`
|
||||
- JobSpec 示例:`src/mvp/v1.1/py/jobspecs/{ppo,grpo,sft}.yaml`
|
||||
- 提交入口:`src/mvp/v1.1/py/run.py`(在 head 容器内执行,使用 Ray Python SDK 提交)
|
||||
- 设计文档:`specs/mvp/v1.1/sdk_submit_refactor.md`
|
||||
|
||||
2) **共享根路径抽象(dev/prod 一致)**
|
||||
- 引入 `SHARED_ROOT` 作为唯一共享根路径:
|
||||
- dev:建议也用 `/private`(docker compose 把宿主机 shared 挂到容器内 `/private`,模拟生产)
|
||||
- prod:固定 `/private`(算力平台容器内 NFS)
|
||||
- 任何代码/脚本不得写死 `/mnt/shared`(允许兼容旧路径但不得作为主路径)。
|
||||
|
||||
3) **共享目录分层(新增 `common/` 与 `user/`)**
|
||||
- 在 `datasets/hf/jobs/outputs` 之外,新增一个所有用户可读写的共享区:
|
||||
- `${SHARED_ROOT}/common/`:共享模型/数据/代码快照(多版本 verl / 公共数据)
|
||||
- `${SHARED_ROOT}/user/`:用户自定义代码(例如 `reward_fn_path` 指向这里)
|
||||
- v1.1 默认策略:先假设“所有用户可写”(后续 v3 再做权限与隔离)。
|
||||
|
||||
4) **可排障基础**
|
||||
- 每个 job 目录必须有:
|
||||
- `config/`:提交命令、JobSpec 快照、关键 env_vars
|
||||
- `logs/`:Ray job logs + hydra logs(如有)
|
||||
- `checkpoints/`:按 `save_freq` 控制频率(默认每 10 step)
|
||||
- 提供“失败快照”能力:收集 `ray status` / `ray job list` / `ray list nodes` / `ray list actors`(最少其中 2 项)写入 job 目录。
|
||||
- v1.1 submitter 默认落盘:
|
||||
- `${SHARED_ROOT}/jobs/<id>/config/job_spec.json`
|
||||
- `${SHARED_ROOT}/jobs/<id>/config/runtime_env.json`
|
||||
- `${SHARED_ROOT}/jobs/<id>/config/submit_cmd.txt`
|
||||
- `${SHARED_ROOT}/jobs/<id>/logs/ray_job_submit.out`
|
||||
- `${SHARED_ROOT}/jobs/<id>/debug/ray_status_{pre,post}.txt`
|
||||
- `${SHARED_ROOT}/jobs/<id>/debug/ray_job_list_post.txt`
|
||||
|
||||
### 2.2 Workload 扩展(至少新增 1 个)
|
||||
|
||||
v1.1 需要新增并验收通过两个 workload(都要跑通闭环):
|
||||
|
||||
- **GRPO on Ray**(推荐优先,复用 PPO 入口,通过算法配置切换)
|
||||
- 基于 `python -m verl.trainer.main_ppo`
|
||||
- 通过配置覆盖:`algorithm.adv_estimator=grpo`(以及必要的 rollout 参数)
|
||||
|
||||
- **SFT on Ray(Ray-native)**
|
||||
- 入口:`python -m verl.trainer.sft_trainer_ray`
|
||||
- 参考实现:`verl/verl/trainer/sft_trainer_ray.py`(内部会 `ray.init()`)
|
||||
- 需要确保 `ray.init()` 连接已有集群:
|
||||
- 优先:`runtime_env.env_vars.RAY_ADDRESS=auto`(配合 `ray job submit`)
|
||||
- 兜底:在 v1.1 的 launcher 脚本里显式 `ray.init(address="auto")` 再调用 trainer(避免依赖 Ray 的 env var 行为差异)
|
||||
- 重要细节:Ray Job 的 entrypoint(driver)默认不分配 GPU,因此 SFT driver 侧不要强依赖 CUDA:
|
||||
- 推荐:`trainer.device=cpu`(driver 只做 orchestration;训练由 Ray workers 占 GPU)
|
||||
|
||||
---
|
||||
|
||||
## 3. v1.1 关键设计点
|
||||
|
||||
### 3.1 多版本代码与自定义逻辑(为 v3.1 铺路,但 v1.1 先做最小验证)
|
||||
|
||||
已确定优先方案(A):通过 **Ray Job 的 `runtime_env.env_vars`** 注入 `PYTHONPATH`。
|
||||
|
||||
- `code_path`(例如 `${SHARED_ROOT}/common/code/verl/<commit>`)
|
||||
- 提交 job 时设置:
|
||||
- `runtime_env.env_vars.PYTHONPATH = "<code_path>:$PYTHONPATH"`
|
||||
|
||||
并约定:
|
||||
|
||||
- `reward_fn_path` 可指向 `${SHARED_ROOT}/user/code/...` 下用户自定义代码
|
||||
- 与 `code_path` 一样,必须通过 `runtime_env.env_vars` 确保该路径可被 import(例如把 `${SHARED_ROOT}/user/code` 也加入 `PYTHONPATH`)
|
||||
|
||||
v1.1 中至少做一次“代码覆盖验证”:
|
||||
|
||||
- 在 code_path 下放一个可识别的 `verl` 版本标识(例如 `verl.__version__` 打印差异)
|
||||
- 提交 job 并在日志中确认 import 的是 code_path 的版本(而不是镜像内默认安装)
|
||||
|
||||
v1.1 的最小落地方式(已实现):
|
||||
|
||||
- 提供代码快照脚本:`src/mvp/v1.1/scripts/31_snapshot_verl_code.sh`
|
||||
- 会把 `/workspace/verl`(挂载的 repo)复制到 `${SHARED_ROOT}/common/code/verl/<code_id>/`
|
||||
- 并写入 `${code_path}/mvp_marker.py`,用于在 Ray job logs 中验证“选用的是哪份 code_path”
|
||||
- submitter 会在 entrypoint 前运行 preflight:
|
||||
- 打印 `verl.__file__` 与 `mvp_marker.MARKER`
|
||||
- 由此确认 job 粒度的 PYTHONPATH 生效,且不同 job 可指向不同 `code_path`(多版本共存)
|
||||
|
||||
### 3.2 Checkpoint 策略(磁盘保护)
|
||||
|
||||
- 默认:`save_freq=10`(每 10 step 保存一次)
|
||||
- 对于 step 数已知的短任务(例如 29 steps),可以通过配置把 `save_freq` 调整为 10/15/29(按需求权衡)
|
||||
- 作业目录按 `submission_id` 隔离,方便清理与归档
|
||||
|
||||
---
|
||||
|
||||
## 4. v1.1 交付物清单(代码 + 文档)
|
||||
|
||||
### 4.1 代码(建议落点)
|
||||
|
||||
在 `src/mvp/` 下新增 v1.1 级别的提交器与模板(或在 `src/mvp/v1` 原地演进但要保持 v1 可回归):
|
||||
|
||||
- `src/mvp/v1.1/`
|
||||
- `docker-compose.yaml`(与 v1 互不干扰的容器名/网络名)
|
||||
- `scripts/`(Ray 启动/prepare 保留 bash;submit 通过 SDK 工具执行)
|
||||
- `py/`(工程化提交层:YAML + Ray Python SDK)
|
||||
- `py/configs/`(Ray 基础配置)
|
||||
- `py/jobspecs/`(训练 JobSpec)
|
||||
- `py/run.py`(入口)
|
||||
|
||||
此外,为了对齐 dev 环境约束(远程机固定目录):
|
||||
|
||||
- 远程机目录必须新增:`argus@h1:/home2/argus/infra/mvp/v1.1/`
|
||||
- 该目录内需包含 v1.1 的全部内容(compose + scripts + README),可由本 repo 的 `src/mvp/v1.1/` 同步过去
|
||||
|
||||
### 4.2 文档
|
||||
|
||||
- `specs/mvp/v1.1/v1.1_action.md`:开发、部署、测试、验收流程(可复现)
|
||||
- 更新 `specs/mvp/mvp_roadmap.md`:保持路线图与落地一致(按需)
|
||||
|
||||
---
|
||||
|
||||
## 5. v1.1 验收标准(DoD)
|
||||
|
||||
### 5.1 Hardening DoD
|
||||
|
||||
- [ ] 所有提交均由 head 执行 `ray job submit`,且显式 `--submission-id=<id>`
|
||||
- [ ] 共享根路径由 `SHARED_ROOT` 控制(dev/prod 可切换),脚本无硬编码
|
||||
- [ ] 每个 job 的输出目录为:`${SHARED_ROOT}/jobs/<submission_id>/`
|
||||
- [ ] checkpoint 不会“每 step 保存”导致爆盘:默认 `save_freq=10`
|
||||
- [ ] job 失败时,`${SHARED_ROOT}/jobs/<id>/config/` 中有足够信息定位(命令、env、ray 状态快照)
|
||||
- [ ] v1.1 测试前会清理 v1 的遗留容器/进程(避免端口、容器名、Ray session 干扰)
|
||||
|
||||
### 5.2 Workload DoD(GRPO + SFT 都必须)
|
||||
|
||||
GRPO(必须):
|
||||
|
||||
- [ ] `algorithm.adv_estimator=grpo` 的 job 可提交并进入 RUNNING
|
||||
- [ ] job 能跑完最小训练步数(可设 `total_epochs=1` 或 `total_training_steps`)
|
||||
- [ ] 输出目录内有日志与至少 1 次 checkpoint(或明确不保存并说明原因)
|
||||
|
||||
SFT(必须):
|
||||
|
||||
- [ ] `sft_trainer_ray` 可连接集群并跑到至少 1 个 step(推荐最小训练步数/epoch)
|
||||
- [ ] 输出目录与 checkpoint 策略同 v1.1 规范(落盘到 `${SHARED_ROOT}/jobs/<id>/...`)
|
||||
148
specs/mvp/v1.1/sdk_submit_refactor.md
Normal file
148
specs/mvp/v1.1/sdk_submit_refactor.md
Normal file
@ -0,0 +1,148 @@
|
||||
# MVP v1.1 工程化重构方案:Ray Python SDK 提交层(YAML Config + YAML JobSpec)
|
||||
|
||||
本文档把 v1.1 的“代码工程化”目标落到一个明确的设计:**保留现有 scripts**(Ray 集群构建、数据准备、模型准备、代码快照),将“任务提交机制”重构为 **Ray Python SDK**(`ray.job_submission.JobSubmissionClient`)驱动的 Python 工具层。
|
||||
|
||||
> 约束(已确认)
|
||||
> 1) 基础配置用 YAML,JobSpec 也用 YAML。
|
||||
> 2) 工具必须在 **head 容器**执行(从 head 发起提交,满足“在 head 提交”的要求)。
|
||||
> 3) 训练参数组织保持与现在一致:仍然使用 **Hydra overrides** 方式构造 entrypoint。
|
||||
> 4) 不使用 `requests` 直连 HTTP API(只用 Ray SDK)。
|
||||
|
||||
---
|
||||
|
||||
## 1. 当前 Ray SDK 能力验证(关键前提)
|
||||
|
||||
在 head 容器(`mvp11-ray-head`)中验证:
|
||||
|
||||
- Ray 版本:`2.51.1`
|
||||
- `JobSubmissionClient.submit_job` 支持以下关键字段:
|
||||
- `submission_id`
|
||||
- `runtime_env`
|
||||
- `entrypoint_num_cpus`
|
||||
- `entrypoint_num_gpus`
|
||||
- `entrypoint_resources`(用于强制 driver 落 worker)
|
||||
|
||||
因此 v1.1 可以“纯 SDK”完成提交,不需要 `requests` fallback。
|
||||
|
||||
---
|
||||
|
||||
## 2. 系统分层(不动 scripts,只重构提交层)
|
||||
|
||||
### 2.1 scripts(保留)
|
||||
|
||||
`src/mvp/v1.1/scripts/` 继续负责:
|
||||
|
||||
- 容器生命周期:`01_up.sh` / `02_down.sh`
|
||||
- Ray 启动:`20_start_head.sh` / `21_start_workers.sh`
|
||||
- 数据/模型准备:`30_prepare_data_and_model.sh`
|
||||
- 代码快照:`31_snapshot_verl_code.sh`(生成 `${SHARED_ROOT}/common/code/verl/<code_id>/`)
|
||||
|
||||
scripts 可以新增一个“薄封装”脚本,负责 `docker exec` 进 head 容器并运行 Python 提交器,但 scripts 不再拼 `ray job submit ...` CLI 字符串。
|
||||
|
||||
### 2.2 Python 工具层(新增)
|
||||
|
||||
在 `src/mvp/v1.1/py/` 新增提交工具层:
|
||||
|
||||
- 读取 Ray 基础配置(YAML)
|
||||
- 读取训练 JobSpec(YAML)
|
||||
- 用 Ray Python SDK 提交/查询/停止/拉日志
|
||||
- 将 job 级别产物落盘到:`${SHARED_ROOT}/jobs/<submission_id>/...`
|
||||
|
||||
---
|
||||
|
||||
## 3. 输入定义:两份 YAML
|
||||
|
||||
### 3.1 Ray 基础配置(RayConfig YAML)
|
||||
|
||||
这份配置是“稳定可复用”的,描述 cluster 与 driver placement 等通用信息。
|
||||
|
||||
字段建议:
|
||||
|
||||
- `address`: `http://127.0.0.1:8265`(从 head 容器内部视角)
|
||||
- `shared_root`: `/private`
|
||||
- `entrypoint_num_cpus`: `1`
|
||||
- `entrypoint_resources`: `{"worker_node": 1}`(强制 driver 使用 worker 才有的资源)
|
||||
- `runtime_env.env_vars`: HF cache / endpoint 等通用环境变量
|
||||
- `user_code_path`: `${shared_root}/user/code`(可选,默认值也可)
|
||||
|
||||
### 3.2 训练 JobSpec(JobSpec YAML)
|
||||
|
||||
这份配置是“一次训练”语义,描述 workload + 训练参数 + code_path 多版本等。
|
||||
|
||||
字段建议:
|
||||
|
||||
- `workload`: `ppo|grpo|sft`
|
||||
- `submission_id`: 可选(不填则生成;但最终必须显式传给 SDK)
|
||||
- `code_path`: `${shared_root}/common/code/verl/<code_id>`(多版本关键字段)
|
||||
- `model_id`
|
||||
- 数据路径:`train_file` / `val_file`(按 workload)
|
||||
- 训练参数:`nnodes` / `n_gpus_per_node` / `total_training_steps` / `save_freq` / `test_freq`
|
||||
|
||||
注意(SFT 的 driver 设备选择):
|
||||
|
||||
- Ray job 的 entrypoint(driver)默认不分配 GPU(我们通常不设置 `entrypoint_num_gpus`)。
|
||||
- `sft_trainer_ray.py` 的 driver 会用 `trainer.device` 做张量统计;若设置为 `cuda` 且 driver 无 GPU,会报:
|
||||
- `RuntimeError: No CUDA GPUs are available`
|
||||
- 因此 v1.1 的 SFT JobSpec 默认应设置:`trainer.device=cpu`(训练 workers 仍会占用 GPU)。
|
||||
|
||||
---
|
||||
|
||||
## 4. Python 提交器的职责(tool class)
|
||||
|
||||
建议实现 `RayJobTool`(或类似命名),能力:
|
||||
|
||||
### 4.1 submit(核心)
|
||||
|
||||
输入:`RayConfig + JobSpec`
|
||||
输出:`submission_id`
|
||||
|
||||
实现要点:
|
||||
|
||||
- `client = JobSubmissionClient(address)`
|
||||
- 生成/确定 `submission_id`
|
||||
- `runtime_env` 合并逻辑:
|
||||
- 合并 config 与 jobspec 的 `env_vars`
|
||||
- 强制注入多版本:
|
||||
- `PYTHONPATH = "<code_path>:<user_code_path>:$PYTHONPATH"`
|
||||
- 构造 entrypoint(保持 hydra overrides 风格):
|
||||
- PPO/GRPO:`python3 -m verl.trainer.main_ppo ...`
|
||||
- SFT:`python3 -m verl.trainer.sft_trainer_ray ...`
|
||||
- 强制 driver 落 worker:
|
||||
- `entrypoint_resources=config.entrypoint_resources`
|
||||
- `entrypoint_num_cpus=config.entrypoint_num_cpus`
|
||||
- 落盘产物:
|
||||
- `${shared_root}/jobs/<id>/config/{ray_config.yaml,jobspec.yaml,submit_payload.json}`
|
||||
- `${shared_root}/jobs/<id>/logs/submit.out`
|
||||
- `${shared_root}/jobs/<id>/debug/{ray_status_pre,ray_job_list_post}.txt`(可用 SDK 或 `ray status` 采集)
|
||||
|
||||
### 4.2 status / stop / logs / list
|
||||
|
||||
- `status(submission_id)`
|
||||
- `stop(submission_id)`
|
||||
- `logs(submission_id)`(可支持 tail)
|
||||
- `list()`
|
||||
|
||||
---
|
||||
|
||||
## 5. `run.py` 入口(必须在 head 容器执行)
|
||||
|
||||
建议入口:
|
||||
|
||||
- `python3 /workspace/mvp/v1.1/py/run.py --config <ray_config.yaml> --jobspec <jobspec.yaml> --action submit`
|
||||
- `--action` 支持:`submit|status|stop|logs|list`
|
||||
|
||||
host 侧执行方式(由 scripts 薄封装):
|
||||
|
||||
- `docker exec mvp11-ray-head python3 /workspace/mvp/v1.1/py/run.py ...`
|
||||
|
||||
---
|
||||
|
||||
## 6. 验收口径(工程化部分)
|
||||
|
||||
1) **SDK 提交**:不使用 `ray job submit` CLI,改用 `JobSubmissionClient.submit_job`。
|
||||
2) **driver 仍强制在 worker**:SDK 提交时 `entrypoint_resources={"worker_node":1}` 生效。
|
||||
3) **多版本共存验证**:
|
||||
- 通过 `31_snapshot_verl_code.sh` 生成 `codeA/codeB` 两份 code_path
|
||||
- 通过两份 JobSpec 分别指向不同 `code_path`
|
||||
- 在 job logs 中看到不同的 marker(例如 `mvp_marker.MARKER`)
|
||||
|
||||
333
specs/mvp/v1.1/v1.1_action.md
Normal file
333
specs/mvp/v1.1/v1.1_action.md
Normal file
@ -0,0 +1,333 @@
|
||||
# MVP v1.1 行动文档(实施方案 / 部署测试 / 验收口径)
|
||||
|
||||
本文档面向“把 v1 跑通的实验脚本,升级为可长期回归的 v1.1 最小系统”,并给出**开发改造 → 部署测试 → 验收**的可复现流程。
|
||||
|
||||
> v1.1 的核心约束(来自讨论结论)
|
||||
> - 仍然必须通过 **head 节点执行 `ray job submit`** 提交任务。
|
||||
> - 训练/driver **必须落在 worker**(head 不跑训练)。
|
||||
> - 多版本 `verl` 共存:同一镜像不变,必须通过 **Ray Job `runtime_env.env_vars` 注入 `PYTHONPATH`** 让 job 粒度选择代码版本。
|
||||
> - 存储只考虑 NFS:dev 环境我们自己 mount;生产环境容器内统一看到 `/private/`。
|
||||
|
||||
---
|
||||
|
||||
## 1. 目标与非目标
|
||||
|
||||
### 1.1 目标(v1.1 必须做到)
|
||||
|
||||
1) **可回归**:同一环境连续跑多次 PPO 回归,不互相覆盖,输出按 submission id 归档。
|
||||
2) **可扩展**:新增并验收通过 2 个 workload(**GRPO + SFT**)并跑通闭环。
|
||||
3) **可排障**:每个 job 目录包含完整的提交快照、关键 env、Ray 状态快照与日志入口。
|
||||
4) **可多版本共存**:同一 Ray 集群内,不同 job 通过 `PYTHONPATH` 选择不同 `verl` 代码快照。
|
||||
|
||||
### 1.2 非目标(v1.1 不做)
|
||||
|
||||
- 不做平台 API/队列/多租户/RBAC(这是 v2/v3)。
|
||||
- 不做复杂调度(拓扑、IB 域、NUMA、Gang 等自动化策略)。
|
||||
|
||||
---
|
||||
|
||||
## 2. 运行环境约定(dev / prod 一致抽象)
|
||||
|
||||
### 2.1 拓扑(单机 3 容器)
|
||||
|
||||
- `mvp-ray-head`:无 GPU,`ray start --head --num-cpus=0 --num-gpus=0`(控制面 only)
|
||||
- `mvp-ray-worker-0`:4 GPU
|
||||
- `mvp-ray-worker-1`:4 GPU
|
||||
|
||||
### 2.2 “head 不跑训练”的硬约束实现(必须)
|
||||
|
||||
1) **head CPU=0**:从资源层面阻断默认 task/driver 落到 head。
|
||||
2) **worker 自定义资源标签**:worker 启动时带 `--resources='{"worker_node": 100}'`。
|
||||
3) **ray job submit 强制 entrypoint 落 worker**:提交时必须带:
|
||||
- `--entrypoint-resources='{"worker_node": 1}'`
|
||||
- `--entrypoint-num-cpus=1`(显式声明 driver 需要的 CPU)
|
||||
|
||||
> 验证口径:`ray job list` 的 `driver_info.node_ip_address` 必须是 worker 的 IP,而不是 head IP。
|
||||
|
||||
### 2.3 共享存储(NFS)与路径(关键)
|
||||
|
||||
- 生产环境:容器内共享根路径固定为 `/private/`(算力平台统一挂载 NFS)。
|
||||
- 开发环境:docker compose 也应把宿主机共享目录挂载到容器内的 `/private/`,从而做到 dev/prod 一致。
|
||||
|
||||
统一约定(容器内视角):
|
||||
|
||||
- `SHARED_ROOT=/private`
|
||||
- Job 输出:`${SHARED_ROOT}/jobs/<submission_id>/`
|
||||
|
||||
建议的共享目录结构(v1.1 新增 `common/` 与 `user/`):
|
||||
|
||||
- `${SHARED_ROOT}/datasets/`:通用数据(例如 gsm8k parquet)
|
||||
- `${SHARED_ROOT}/hf/`:HuggingFace cache(模型/分词器/权重)
|
||||
- `${SHARED_ROOT}/jobs/`:按 submission id 归档的作业目录(强制)
|
||||
- `${SHARED_ROOT}/outputs/`:临时/非强约束输出(不建议长期依赖)
|
||||
- `${SHARED_ROOT}/ray/`:Ray 调试痕迹(可选,通常 Ray 默认写 `/tmp/ray`)
|
||||
- `${SHARED_ROOT}/common/`:所有用户可读写共享区(模型/数据/代码快照)
|
||||
- `${SHARED_ROOT}/common/models/`:可复用基础模型(可用软链指向 hf cache 或 snapshot)
|
||||
- `${SHARED_ROOT}/common/datasets/`:共享数据(或与 `datasets/` 统一规划)
|
||||
- `${SHARED_ROOT}/common/code/`:代码快照(多版本 `verl` / 自定义 reward)
|
||||
- `${SHARED_ROOT}/user/`:用户自定义内容(默认所有用户可写)
|
||||
- `${SHARED_ROOT}/user/code/`:reward_fn 等自定义 Python 代码
|
||||
|
||||
---
|
||||
|
||||
## 3. 开发实施方案(代码改造清单)
|
||||
|
||||
> v1.1 建议新增 `src/mvp/v1.1/`(保持 v1 可回归不被破坏)。
|
||||
|
||||
### 3.1 JobSpec(最小标准化)
|
||||
|
||||
v1.1 的工程化目标是把“提交机制”迁移到 Ray Python SDK,因此输入拆为两份 YAML:
|
||||
|
||||
1) Ray 基础配置(YAML):address / entrypoint resources / runtime_env 等
|
||||
2) 训练 JobSpec(YAML):workload 语义与训练参数(仍由 Hydra overrides 组织)
|
||||
|
||||
训练 JobSpec(YAML)至少包含:
|
||||
|
||||
- `submission_id`:可空;为空时由 submitter 生成(但最终必须显式传给 `ray job submit --submission-id`)
|
||||
- `workload`:`ppo` / `grpo` / `sft`(v1.1 必须 `ppo` + `grpo` + `sft`)
|
||||
- `shared_root`:默认 `/private`(容器内路径)
|
||||
- `code_path`:`verl` 代码快照目录(用于多版本共存)
|
||||
- `reward_fn_path`(可选):指向 `${shared_root}/user/code/...` 下的 Python 文件或模块入口
|
||||
- `model` / `dataset`:必须指向共享存储的持久化路径(避免每次下载/生成)
|
||||
- `ray`:`address=http://127.0.0.1:8265`(从 head 容器内部视角)
|
||||
- `resources`:
|
||||
- `entrypoint_resources={"worker_node":1}`
|
||||
- `entrypoint_num_cpus=1`
|
||||
- `trainer_overrides`:训练参数覆盖(v1.1 默认 `total_epochs=1`、`save_freq=10`)
|
||||
- `env_vars`:会被透传到 `runtime_env.env_vars`(必须包含 `PYTHONPATH` 注入)
|
||||
|
||||
交付物(v1.1 SDK 方式):
|
||||
|
||||
- `src/mvp/v1.1/py/configs/dev.yaml`(Ray 基础配置示例)
|
||||
- `src/mvp/v1.1/py/jobspecs/{ppo,grpo,sft}.yaml`(训练 JobSpec 示例)
|
||||
- `src/mvp/v1.1/py/run.py`(入口:使用 Ray Python SDK 提交/查询/停止/拉日志)
|
||||
- 设计文档:`specs/mvp/v1.1/sdk_submit_refactor.md`
|
||||
|
||||
### 3.2 多版本 `verl` 共存(必须)
|
||||
|
||||
原则:**镜像固定不变**;job 粒度通过 `PYTHONPATH` 选择 `verl` 代码快照。
|
||||
|
||||
提交时必须注入(runtime_env):
|
||||
|
||||
- `PYTHONPATH="<CODE_PATH>:$PYTHONPATH"`(`CODE_PATH` 放最前面)
|
||||
|
||||
并要求 job 在日志中打印一行确认 import 来源,例如:
|
||||
|
||||
- `python -c "import verl,inspect; print(verl.__file__)"`(或训练入口启动时打印)
|
||||
|
||||
v1.1 具体实现(可复现):
|
||||
|
||||
- 先用 `src/mvp/v1.1/scripts/31_snapshot_verl_code.sh` 生成代码快照目录 `${SHARED_ROOT}/common/code/verl/<code_id>/`
|
||||
- 该目录里会包含一个 `mvp_marker.py`(`MARKER=<code_id>`)
|
||||
- 提交 job 时让 `code_path` 指向该快照目录;submitter 会在 entrypoint 前打印:
|
||||
- `MVP_PRECHECK_VERL_FILE`(验证 import 来源)
|
||||
- `MVP_PRECHECK_MARKER`(验证选择的 code_path)
|
||||
|
||||
### 3.3 `submit_job` 工具(组装 ray job submit)
|
||||
|
||||
新增一个提交器(建议 Python,避免复杂 bash quoting):
|
||||
|
||||
- 输入:JobSpec JSON
|
||||
- 产物:
|
||||
- 生成/确定 `submission_id`
|
||||
- 创建 `${SHARED_ROOT}/jobs/<id>/config/`、`logs/`、`checkpoints/`
|
||||
- 写入 `config/job_spec.json`(原样快照)
|
||||
- 写入 `config/runtime_env.json`(最终用于 submit 的 JSON)
|
||||
- 写入 `config/submit_cmd.txt`(最终命令行)
|
||||
- 执行:在 **head 容器内**运行 `ray job submit ...`
|
||||
|
||||
### 3.4 可排障:debug bundle(强制落盘)
|
||||
|
||||
在 job 生命周期的关键节点收集并落盘(至少 2 类):
|
||||
|
||||
- `ray status`
|
||||
- `ray job list`
|
||||
- `ray list nodes`
|
||||
- `ray list actors`
|
||||
|
||||
建议落盘到:
|
||||
|
||||
- `${SHARED_ROOT}/jobs/<id>/debug/`(每次收集带时间戳文件名)
|
||||
|
||||
### 3.5 Workload 扩展:GRPO(v1.1 新增闭环)
|
||||
|
||||
优先用与 PPO 相同入口 `python -m verl.trainer.main_ppo`,仅通过配置切换算法:
|
||||
|
||||
- `algorithm.adv_estimator=grpo`
|
||||
- 其余保持最小可跑:`total_epochs=1`、`save_freq=10`
|
||||
|
||||
### 3.6 Workload 扩展:SFT on Ray(v1.1 必须新增闭环)
|
||||
|
||||
#### 3.6.1 入口与参考实现
|
||||
|
||||
- 入口:`python -m verl.trainer.sft_trainer_ray`
|
||||
- 参考代码:`verl/verl/trainer/sft_trainer.py`(非 Ray 版本)与 `verl/verl/trainer/sft_trainer_ray.py`(Ray 版本)
|
||||
|
||||
> v1.1 要验收的是 “SFT on Ray”,因此默认使用 `sft_trainer_ray.py`。
|
||||
|
||||
#### 3.6.2 连接已有 Ray 集群(必须)
|
||||
|
||||
`sft_trainer_ray.py` 内部直接调用 `ray.init()`,为了确保它连接到**已有集群**(head+workers),v1.1 约定:
|
||||
|
||||
- 提交 job 时通过 `runtime_env.env_vars` 注入:`RAY_ADDRESS=auto`
|
||||
|
||||
如果发现 `ray.init()` 未按预期读取 `RAY_ADDRESS`(Ray 版本差异风险),v1.1 需要提供一个 launcher 兜底:
|
||||
|
||||
- 由 launcher 先显式 `ray.init(address="auto")`,再调用 SFT trainer 逻辑
|
||||
|
||||
#### 3.6.3 SFT 数据格式(parquet schema)
|
||||
|
||||
`sft_trainer_ray` 默认使用 `MultiTurnSFTDataset`,parquet 中至少需要:
|
||||
|
||||
- `messages` 列:list[dict],dict 至少含 `role`/`content`
|
||||
|
||||
v1.1 的 `prepare` 阶段需要生成并持久化 SFT 数据,例如:
|
||||
|
||||
- `${SHARED_ROOT}/datasets/gsm8k_sft/train.parquet`
|
||||
- `${SHARED_ROOT}/datasets/gsm8k_sft/val.parquet`(可选)
|
||||
|
||||
单条样本的 `messages` 形态示例:
|
||||
|
||||
- `[{ "role": "user", "content": "<question>" }, { "role": "assistant", "content": "<answer>" }]`
|
||||
|
||||
> 注意:SFT parquet 不能直接复用 PPO/RL 的 parquet(schema 不同)。
|
||||
|
||||
#### 3.6.4 重要细节:SFT Ray Driver 不应依赖 GPU
|
||||
|
||||
在 `ray job submit` 模式下,我们的 entrypoint(driver)默认 **不会分配 GPU**(我们只指定了 `--entrypoint-num-cpus=1`,没有指定 `--entrypoint-num-gpus`)。
|
||||
|
||||
而 `verl/verl/trainer/sft_trainer_ray.py` 的 driver 逻辑里会用 `trainer.device` 来创建 `torch.tensor(..., device=...)` 做统计,如果设置为 `cuda` 且 driver 没有 GPU,会触发:
|
||||
|
||||
- `RuntimeError: No CUDA GPUs are available`
|
||||
|
||||
因此 v1.1 的 SFT on Ray 验收默认要求:
|
||||
|
||||
- `trainer.device=cpu`(driver 只做 orchestration;真正训练仍由 Ray 的 TrainingWorker/资源池占用 GPU)
|
||||
|
||||
### 3.7 v1.1 脚本化交付(必须独立完整)
|
||||
|
||||
`src/mvp/v1.1/` 需要像 v1 一样提供一套完整脚本,确保 v1.1 可独立运行、可回归:
|
||||
|
||||
- `src/mvp/v1.1/docker-compose.yaml`(容器名建议与 v1 区分,避免冲突)
|
||||
- `src/mvp/v1.1/scripts/00_prereq_check.sh`(含 GPU/目录/NFS/verl 代码检查)
|
||||
- `src/mvp/v1.1/scripts/01_up.sh` / `02_down.sh`(起停)
|
||||
- `src/mvp/v1.1/scripts/20_start_head.sh` / `21_start_workers.sh`
|
||||
- `src/mvp/v1.1/scripts/30_prepare_data_and_model.sh`(包含 PPO 数据 + SFT 数据)
|
||||
- `src/mvp/v1.1/scripts/40_submit_ppo_epoch1.sh`
|
||||
- `src/mvp/v1.1/scripts/41_submit_grpo_epoch1.sh`
|
||||
- `src/mvp/v1.1/scripts/42_submit_sft_minimal.sh`
|
||||
- `src/mvp/v1.1/scripts/50_status.sh`
|
||||
- `src/mvp/v1.1/scripts/31_snapshot_verl_code.sh`(多版本 code snapshot)
|
||||
- `src/mvp/v1.1/scripts/43_submit_jobspec.sh`(通过 JobSpec 提交)
|
||||
- `src/mvp/v1.1/scripts/12_install_py_deps.sh`(安装 PyYAML 等依赖)
|
||||
- `src/mvp/v1.1/scripts/44_submit_sdk.sh`(通过 Ray Python SDK + YAML 提交)
|
||||
|
||||
---
|
||||
|
||||
## 4. 部署与测试流程(dev 环境)
|
||||
|
||||
> dev 环境以远程机目录为例:`argus@h1:/home2/argus/infra/mvp`。v1.1 的所有内容要求放在:
|
||||
>
|
||||
> - `argus@h1:/home2/argus/infra/mvp/v1.1/`
|
||||
>
|
||||
> 并在该目录中通过脚本使用 `docker exec` 协调容器。
|
||||
|
||||
### 4.0 清理 v1 环境(必须先做)
|
||||
|
||||
v1 已在 `argus@h1` 部署过容器与 Ray。为保证 v1.1 的可重复测试,开始 v1.1 前必须清理 v1:
|
||||
|
||||
1) 停止并删除 v1 容器(推荐用 v1 的 down 脚本)
|
||||
2) 确认 `docker ps` 中不再有 v1 的 `mvp-ray-head/mvp-ray-worker-*`
|
||||
|
||||
v1.1 的脚本里也提供了一个 best-effort 清理脚本:`src/mvp/v1.1/scripts/03_cleanup_v1_legacy.sh`(远程目录中同名脚本)。
|
||||
|
||||
### 4.1 环境准备(一次性 / 幂等)
|
||||
|
||||
1) 目录检查(远程机):
|
||||
- `${WORKDIR}/shared/` 存在并具备上述子目录(含 `common/`、`user/`)
|
||||
2) `verl` 代码目录检查:
|
||||
- `${WORKDIR}/verl` 不存在则执行 `git clone https://github.com/volcengine/verl.git`
|
||||
3) GPU 可用性检查:
|
||||
- 设备存在(例如 0-7 可见),并按 worker 容器分配(每个 worker 4 GPU)
|
||||
4) 模型与数据持久化路径:
|
||||
- 模型与数据必须落在 `${SHARED_ROOT}` 下;若已存在则跳过下载/生成
|
||||
- SFT parquet 同样必须落在 `${SHARED_ROOT}` 下;若已存在则跳过生成
|
||||
|
||||
### 4.2 启动 Ray 集群(每次测试)
|
||||
|
||||
1) `docker compose up -d`
|
||||
2) head:`ray start --head --num-cpus=0 --num-gpus=0 ...`
|
||||
3) workers:`ray start --address=<head>:6379 --resources='{"worker_node":100}' ...`
|
||||
4) 验证:`ray status` 显示 1 head + 2 worker,且 head `CPU:0 GPU:0`
|
||||
|
||||
### 4.3 提交 PPO 回归(必须跑 2 次)
|
||||
|
||||
1) 生成 JobSpec(可用模板 + 覆盖项)
|
||||
2) 在 head 容器内执行 submitter(或直接 `ray job submit`)
|
||||
3) 验证要点:
|
||||
- `ray job list`:driver node 是 worker
|
||||
- `${SHARED_ROOT}/jobs/<id>/` 下存在 `config/`、`logs/`、`checkpoints/`
|
||||
- checkpoint 每 10 step 产生(例如 `global_step_10`)
|
||||
|
||||
### 4.4 提交 GRPO(新增 workload 验收)
|
||||
|
||||
同 PPO,但覆盖 `algorithm.adv_estimator=grpo`,确保能进入 RUNNING 并完成最小步数。
|
||||
|
||||
### 4.5 提交 SFT on Ray(新增 workload 验收,必须)
|
||||
|
||||
1) 确认 `${SHARED_ROOT}/datasets/gsm8k_sft/train.parquet` 已存在(由 v1.1 prepare 生成)。
|
||||
2) 通过 head 容器执行 `ray job submit` 提交 `python -m verl.trainer.sft_trainer_ray`。
|
||||
3) 关键约束:
|
||||
- `runtime_env.env_vars.RAY_ADDRESS=auto`(连接已有集群)
|
||||
- `--entrypoint-resources='{"worker_node": 1}'`(driver 落 worker)
|
||||
- `PYTHONPATH=<code_path>:$PYTHONPATH`(多版本 verl)
|
||||
4) 最小化训练配置建议(避免 OOM/耗时过长):
|
||||
- `trainer.total_epochs=1`
|
||||
- `trainer.total_training_steps=10~30`
|
||||
- `trainer.save_freq=10`
|
||||
- `trainer.nnodes=2`、`trainer.n_gpus_per_node=4`(用满 8 卡做一次最小分布式验证)
|
||||
- `data.train_files=${SHARED_ROOT}/datasets/gsm8k_sft/train.parquet`
|
||||
- `trainer.default_local_dir=${SHARED_ROOT}/jobs/<id>/checkpoints`
|
||||
|
||||
### 4.6 工程化验证:JobSpec + 多版本共存(v1.1 必须)
|
||||
|
||||
1) 生成两个 code snapshot(不同 `CODE_ID`):
|
||||
- `CODE_ID=codeA ./scripts/31_snapshot_verl_code.sh`
|
||||
- `CODE_ID=codeB ./scripts/31_snapshot_verl_code.sh`
|
||||
2) 分别修改/复制 JobSpec 模板,使 `code_path` 指向不同 snapshot:
|
||||
- `${SHARED_ROOT}/common/code/verl/codeA`
|
||||
- `${SHARED_ROOT}/common/code/verl/codeB`
|
||||
3) 用 JobSpec 提交(必须从 head):
|
||||
- `./scripts/43_submit_jobspec.sh /workspace/mvp/v1.1/templates/ppo.json`(示例)
|
||||
4) 在 Ray job logs 中验证:
|
||||
- `MVP_PRECHECK_MARKER` 打印为对应的 `codeA`/`codeB`
|
||||
- `MVP_PRECHECK_VERL_FILE` 指向 `${SHARED_ROOT}/common/code/verl/...` 而不是镜像内 site-packages
|
||||
|
||||
---
|
||||
|
||||
## 5. 验收标准(Definition of Done)
|
||||
|
||||
### 5.1 Hardening DoD(全部必选)
|
||||
|
||||
- [ ] 提交必须来自 head:能在 head 容器内看到 `ray job submit ...` 的提交记录
|
||||
- [ ] driver 不在 head:`ray job list` 的 `driver_info.node_ip_address` ∈ worker IP,且 ≠ head IP
|
||||
- [ ] 输出目录按 submission id 隔离:`${SHARED_ROOT}/jobs/<submission_id>/` 不复用、不覆盖
|
||||
- [ ] 数据/模型持久化:再次提交时不重复下载/生成(有 “skip if exists” 的日志)
|
||||
- [ ] checkpoint 策略有效:默认 `save_freq=10`,不会每 step 保存爆盘
|
||||
- [ ] debug bundle 落盘:`${SHARED_ROOT}/jobs/<id>/debug/` 至少包含 2 类 Ray 状态快照
|
||||
- [ ] 多版本共存验证通过:日志中能确认 `verl` import 来源来自 JobSpec 指定的 `code_path`
|
||||
|
||||
### 5.2 Workload DoD(GRPO + SFT 都必须)
|
||||
|
||||
- [ ] GRPO job 能提交、RUNNING、完成最小训练步数
|
||||
- [ ] GRPO job 产物目录满足与 PPO 相同的目录规范与 debug 规范
|
||||
- [ ] SFT job 能提交、连接已有集群并跑到至少 1 个 step(建议最小步数/epoch)
|
||||
- [ ] SFT job 产物目录满足与 PPO 相同的目录规范与 debug 规范
|
||||
|
||||
---
|
||||
|
||||
## 6. 生产环境部署注意事项(v1.1 需要考虑但不强制在 dev 全量模拟)
|
||||
|
||||
- 容器由算力平台创建:我们只负责 SSH 进去纳管(启动 ray / 提交 job / 收集产物)。
|
||||
- 容器内共享路径为 `/private`:所有脚本必须以 `SHARED_ROOT=/private` 工作,不得写死 `/mnt/shared`。
|
||||
- 认证仅内部 token:在 submitter 中把 token 作为 env var 透传(不写入日志明文)。
|
||||
61
src/mvp/v1.1/README.md
Normal file
61
src/mvp/v1.1/README.md
Normal file
@ -0,0 +1,61 @@
|
||||
# MVP v1.1(GRPO + SFT on Ray)运行说明
|
||||
|
||||
本目录是一套**独立可运行**的 v1.1 交付:使用 1 个 Ray head(不跑训练)+ 2 个 Ray worker(各 4 GPU)在同一宿主机通过 `docker exec` 协调容器,并通过 **head 上的 `ray job submit`** 提交作业,同时强制 driver 落到 worker。
|
||||
|
||||
> 远程 dev 环境推荐目录布局:
|
||||
>
|
||||
> - `/home2/argus/infra/mvp/`
|
||||
> - `shared/`(持久化:datasets/hf/jobs/...)
|
||||
> - `verl/`(代码仓库,用于 prepare / snapshot)
|
||||
> - `v1.1/`(本目录内容:compose + scripts)
|
||||
|
||||
---
|
||||
|
||||
## 快速开始(远程机 argus@h1)
|
||||
|
||||
在 `/home2/argus/infra/mvp/v1.1/` 下执行:
|
||||
|
||||
```bash
|
||||
./scripts/00_prereq_check.sh
|
||||
./scripts/01_up.sh
|
||||
./scripts/20_start_head.sh
|
||||
./scripts/21_start_workers.sh
|
||||
./scripts/30_prepare_data_and_model.sh
|
||||
./scripts/12_install_py_deps.sh
|
||||
./scripts/44_submit_sdk.sh /workspace/mvp/v1.1/py/configs/dev.yaml /workspace/mvp/v1.1/py/jobspecs/ppo.yaml
|
||||
./scripts/44_submit_sdk.sh /workspace/mvp/v1.1/py/configs/dev.yaml /workspace/mvp/v1.1/py/jobspecs/grpo.yaml
|
||||
./scripts/44_submit_sdk.sh /workspace/mvp/v1.1/py/configs/dev.yaml /workspace/mvp/v1.1/py/jobspecs/sft.yaml
|
||||
./scripts/40_submit_ppo_epoch1.sh
|
||||
./scripts/41_submit_grpo_epoch1.sh
|
||||
./scripts/42_submit_sft_minimal.sh
|
||||
./scripts/50_status.sh
|
||||
```
|
||||
|
||||
说明:
|
||||
|
||||
- `scripts/40/41/42` 是历史的 “CLI 提交脚本”(仍可用),但 v1.1 的工程化目标是把提交机制迁移到 `scripts/44_submit_sdk.sh`(Ray Python SDK + YAML 配置)。
|
||||
|
||||
停止并清理:
|
||||
|
||||
```bash
|
||||
./scripts/02_down.sh
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 关键约束(必须满足)
|
||||
|
||||
- **必须通过 head 执行 `ray job submit`** 提交任务(满足“从 head 提交”要求)。
|
||||
- **head 不跑训练**:head 以 `--num-cpus=0 --num-gpus=0` 启动;worker 具备自定义资源 `worker_node`;提交时 `--entrypoint-resources='{"worker_node": 1}'` 强制 driver 落 worker。
|
||||
- **共享路径统一为 `/private`(容器内)**:compose 将宿主机 `../shared` 挂载到容器内 `/private`,对齐生产环境。
|
||||
- **多版本 verl**:通过 Ray Job `runtime_env.env_vars.PYTHONPATH` 注入 `${SHARED_ROOT}/common/code/verl/...`,job 粒度选择代码快照。
|
||||
|
||||
---
|
||||
|
||||
## 共享目录(容器内 /private)
|
||||
|
||||
- `/private/datasets/`:数据(PPO 的 gsm8k RL parquet、SFT parquet)
|
||||
- `/private/hf/`:HF 缓存(模型持久化,避免重复下载)
|
||||
- `/private/jobs/<submission_id>/`:每个 Ray Job 的输出目录(logs/config/debug/checkpoints)
|
||||
- `/private/common/`:共享区(模型/数据/代码快照)
|
||||
- `/private/user/`:用户自定义代码(例如 reward_fn)
|
||||
89
src/mvp/v1.1/docker-compose.yaml
Normal file
89
src/mvp/v1.1/docker-compose.yaml
Normal file
@ -0,0 +1,89 @@
|
||||
version: "3.8"
|
||||
|
||||
services:
|
||||
ray_head:
|
||||
image: verlai/verl:sgl055.latest
|
||||
container_name: mvp11-ray-head
|
||||
command: sleep infinity
|
||||
ports:
|
||||
- "8265:8265"
|
||||
volumes:
|
||||
- ../verl:/workspace/verl
|
||||
- ../shared:/private
|
||||
- .:/workspace/mvp/v1.1
|
||||
shm_size: "10g"
|
||||
ulimits:
|
||||
nofile:
|
||||
soft: 65536
|
||||
hard: 65536
|
||||
cap_add:
|
||||
- SYS_ADMIN
|
||||
- SYS_PTRACE
|
||||
networks:
|
||||
- mvp11-ray-net
|
||||
environment:
|
||||
HF_HOME: "/private/hf"
|
||||
HUGGINGFACE_HUB_CACHE: "/private/hf/hub"
|
||||
TRANSFORMERS_CACHE: "/private/hf/transformers"
|
||||
HF_ENDPOINT: "https://hf-mirror.com"
|
||||
PYTHONUNBUFFERED: "1"
|
||||
|
||||
ray_worker_0:
|
||||
image: verlai/verl:sgl055.latest
|
||||
container_name: mvp11-ray-worker-0
|
||||
command: sleep infinity
|
||||
volumes:
|
||||
- ../verl:/workspace/verl
|
||||
- ../shared:/private
|
||||
- .:/workspace/mvp/v1.1
|
||||
shm_size: "10g"
|
||||
ulimits:
|
||||
nofile:
|
||||
soft: 65536
|
||||
hard: 65536
|
||||
cap_add:
|
||||
- SYS_ADMIN
|
||||
- SYS_PTRACE
|
||||
networks:
|
||||
- mvp11-ray-net
|
||||
runtime: nvidia
|
||||
environment:
|
||||
NVIDIA_VISIBLE_DEVICES: "0,1,2,3"
|
||||
NVIDIA_DRIVER_CAPABILITIES: "all"
|
||||
HF_HOME: "/private/hf"
|
||||
HUGGINGFACE_HUB_CACHE: "/private/hf/hub"
|
||||
TRANSFORMERS_CACHE: "/private/hf/transformers"
|
||||
HF_ENDPOINT: "https://hf-mirror.com"
|
||||
PYTHONUNBUFFERED: "1"
|
||||
|
||||
ray_worker_1:
|
||||
image: verlai/verl:sgl055.latest
|
||||
container_name: mvp11-ray-worker-1
|
||||
command: sleep infinity
|
||||
volumes:
|
||||
- ../verl:/workspace/verl
|
||||
- ../shared:/private
|
||||
- .:/workspace/mvp/v1.1
|
||||
shm_size: "10g"
|
||||
ulimits:
|
||||
nofile:
|
||||
soft: 65536
|
||||
hard: 65536
|
||||
cap_add:
|
||||
- SYS_ADMIN
|
||||
- SYS_PTRACE
|
||||
networks:
|
||||
- mvp11-ray-net
|
||||
runtime: nvidia
|
||||
environment:
|
||||
NVIDIA_VISIBLE_DEVICES: "4,5,6,7"
|
||||
NVIDIA_DRIVER_CAPABILITIES: "all"
|
||||
HF_HOME: "/private/hf"
|
||||
HUGGINGFACE_HUB_CACHE: "/private/hf/hub"
|
||||
TRANSFORMERS_CACHE: "/private/hf/transformers"
|
||||
HF_ENDPOINT: "https://hf-mirror.com"
|
||||
PYTHONUNBUFFERED: "1"
|
||||
|
||||
networks:
|
||||
mvp11-ray-net:
|
||||
driver: bridge
|
||||
33
src/mvp/v1.1/job_spec.schema.json
Normal file
33
src/mvp/v1.1/job_spec.schema.json
Normal file
@ -0,0 +1,33 @@
|
||||
{
|
||||
"$schema": "https://json-schema.org/draft/2020-12/schema",
|
||||
"title": "mvp-v1.1-job-spec",
|
||||
"type": "object",
|
||||
"required": ["workload", "shared_root", "code_path", "model_id", "ray", "runtime_env"],
|
||||
"properties": {
|
||||
"submission_id": { "type": "string" },
|
||||
"workload": { "type": "string", "enum": ["ppo", "grpo", "sft"] },
|
||||
"shared_root": { "type": "string" },
|
||||
"code_path": { "type": "string" },
|
||||
"model_id": { "type": "string" },
|
||||
"ppo": { "type": "object" },
|
||||
"grpo": { "type": "object" },
|
||||
"sft": { "type": "object" },
|
||||
"ray": {
|
||||
"type": "object",
|
||||
"required": ["address", "entrypoint_num_cpus", "entrypoint_resources"],
|
||||
"properties": {
|
||||
"address": { "type": "string" },
|
||||
"entrypoint_num_cpus": { "type": "number" },
|
||||
"entrypoint_resources": { "type": "object" }
|
||||
}
|
||||
},
|
||||
"runtime_env": {
|
||||
"type": "object",
|
||||
"required": ["env_vars"],
|
||||
"properties": {
|
||||
"env_vars": { "type": "object" }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
20
src/mvp/v1.1/py/configs/dev.yaml
Normal file
20
src/mvp/v1.1/py/configs/dev.yaml
Normal file
@ -0,0 +1,20 @@
|
||||
# Ray 基础配置(dev 环境 / head 容器内视角)
|
||||
address: "http://127.0.0.1:8265"
|
||||
|
||||
# 容器内共享根路径(对齐生产 /private)
|
||||
shared_root: "/private"
|
||||
|
||||
# 强制 driver 落 worker(head 不跑训练)
|
||||
entrypoint_num_cpus: 1
|
||||
entrypoint_resources:
|
||||
worker_node: 1
|
||||
|
||||
# 运行时环境变量(所有 job 通用)
|
||||
runtime_env:
|
||||
env_vars:
|
||||
HF_ENDPOINT: "https://hf-mirror.com"
|
||||
PYTHONUNBUFFERED: "1"
|
||||
|
||||
# 用户自定义代码目录(可被 PYTHONPATH 注入)
|
||||
user_code_path: "/private/user/code"
|
||||
|
||||
20
src/mvp/v1.1/py/jobspecs/grpo.yaml
Normal file
20
src/mvp/v1.1/py/jobspecs/grpo.yaml
Normal file
@ -0,0 +1,20 @@
|
||||
workload: "grpo"
|
||||
|
||||
submission_id: ""
|
||||
|
||||
code_path: "/private/common/code/verl/verl_repo"
|
||||
|
||||
model_id: "Qwen/Qwen2.5-0.5B-Instruct"
|
||||
|
||||
train_file: "/private/datasets/gsm8k/train.parquet"
|
||||
val_file: "/private/datasets/gsm8k/test.parquet"
|
||||
|
||||
nnodes: 2
|
||||
n_gpus_per_node: 4
|
||||
|
||||
total_epochs: 1
|
||||
total_training_steps: 10
|
||||
|
||||
save_freq: 10
|
||||
test_freq: -1
|
||||
|
||||
22
src/mvp/v1.1/py/jobspecs/ppo.yaml
Normal file
22
src/mvp/v1.1/py/jobspecs/ppo.yaml
Normal file
@ -0,0 +1,22 @@
|
||||
workload: "ppo"
|
||||
|
||||
# 可选:不填则 submitter 自动生成
|
||||
submission_id: ""
|
||||
|
||||
# 多版本:指向 code snapshot(由 scripts/31_snapshot_verl_code.sh 生成)
|
||||
code_path: "/private/common/code/verl/verl_repo"
|
||||
|
||||
model_id: "Qwen/Qwen2.5-0.5B-Instruct"
|
||||
|
||||
train_file: "/private/datasets/gsm8k/train.parquet"
|
||||
val_file: "/private/datasets/gsm8k/test.parquet"
|
||||
|
||||
nnodes: 2
|
||||
n_gpus_per_node: 4
|
||||
|
||||
total_epochs: 1
|
||||
total_training_steps: 10
|
||||
|
||||
save_freq: 10
|
||||
test_freq: -1
|
||||
|
||||
22
src/mvp/v1.1/py/jobspecs/sft.yaml
Normal file
22
src/mvp/v1.1/py/jobspecs/sft.yaml
Normal file
@ -0,0 +1,22 @@
|
||||
workload: "sft"
|
||||
|
||||
submission_id: ""
|
||||
|
||||
code_path: "/private/common/code/verl/verl_repo"
|
||||
|
||||
model_id: "Qwen/Qwen2.5-0.5B-Instruct"
|
||||
|
||||
train_file: "/private/datasets/gsm8k_sft/train.parquet"
|
||||
val_file: null
|
||||
|
||||
nnodes: 2
|
||||
n_gpus_per_node: 4
|
||||
|
||||
total_epochs: 1
|
||||
total_training_steps: 10
|
||||
|
||||
save_freq: 10
|
||||
|
||||
# SFT driver 默认不分配 GPU(ray job entrypoint 不指定 entrypoint_num_gpus),因此 driver 侧不要依赖 CUDA
|
||||
trainer_device: "cpu"
|
||||
|
||||
1
src/mvp/v1.1/py/mvp_v11/__init__.py
Normal file
1
src/mvp/v1.1/py/mvp_v11/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
|
||||
96
src/mvp/v1.1/py/mvp_v11/builders.py
Normal file
96
src/mvp/v1.1/py/mvp_v11/builders.py
Normal file
@ -0,0 +1,96 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
from .models import JobSpec
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class BuiltCommand:
|
||||
argv: list[str]
|
||||
|
||||
|
||||
def build_training_argv(spec: JobSpec, submission_id: str, job_dir: str) -> BuiltCommand:
|
||||
"""
|
||||
Returns argv for the actual training process (Hydra overrides preserved).
|
||||
This argv is executed by a lightweight Python driver entrypoint.
|
||||
"""
|
||||
if spec.workload in ("ppo", "grpo"):
|
||||
algo_overrides: list[str] = []
|
||||
if spec.workload == "grpo":
|
||||
algo_overrides.append("algorithm.adv_estimator=grpo")
|
||||
|
||||
test_freq = spec.test_freq if spec.test_freq is not None else -1
|
||||
val_file = spec.val_file if spec.val_file is not None else "null"
|
||||
|
||||
argv = [
|
||||
"python3",
|
||||
"-m",
|
||||
"verl.trainer.main_ppo",
|
||||
f"data.train_files={spec.train_file}",
|
||||
f"data.val_files={val_file}",
|
||||
"data.train_batch_size=256",
|
||||
"data.max_prompt_length=512",
|
||||
"data.max_response_length=512",
|
||||
f"actor_rollout_ref.model.path={spec.model_id}",
|
||||
"actor_rollout_ref.actor.optim.lr=1e-6",
|
||||
"actor_rollout_ref.actor.ppo_mini_batch_size=64",
|
||||
"actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4",
|
||||
"actor_rollout_ref.rollout.name=sglang",
|
||||
"actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8",
|
||||
"actor_rollout_ref.rollout.tensor_model_parallel_size=1",
|
||||
"actor_rollout_ref.rollout.gpu_memory_utilization=0.4",
|
||||
"actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4",
|
||||
"critic.optim.lr=1e-5",
|
||||
f"critic.model.path={spec.model_id}",
|
||||
"critic.ppo_micro_batch_size_per_gpu=4",
|
||||
"algorithm.kl_ctrl.kl_coef=0.001",
|
||||
*algo_overrides,
|
||||
"trainer.logger=console",
|
||||
"trainer.val_before_train=False",
|
||||
f"trainer.n_gpus_per_node={spec.n_gpus_per_node}",
|
||||
f"trainer.nnodes={spec.nnodes}",
|
||||
f"trainer.save_freq={spec.save_freq}",
|
||||
f"trainer.test_freq={test_freq}",
|
||||
f"trainer.total_epochs={spec.total_epochs}",
|
||||
f"trainer.total_training_steps={spec.total_training_steps}",
|
||||
"trainer.resume_mode=disable",
|
||||
f"trainer.default_local_dir={job_dir}/checkpoints",
|
||||
"+ray_kwargs.ray_init.address=auto",
|
||||
f"hydra.run.dir={job_dir}/logs/hydra",
|
||||
]
|
||||
return BuiltCommand(argv=argv)
|
||||
|
||||
if spec.workload == "sft":
|
||||
val_override = "null" if spec.val_file is None else spec.val_file
|
||||
trainer_device = spec.trainer_device or "cpu"
|
||||
|
||||
argv = [
|
||||
"python3",
|
||||
"-m",
|
||||
"verl.trainer.sft_trainer_ray",
|
||||
f"model.path={spec.model_id}",
|
||||
f"data.train_files={spec.train_file}",
|
||||
f"data.val_files={val_override}",
|
||||
"data.train_batch_size=64",
|
||||
"data.micro_batch_size_per_gpu=1",
|
||||
"data.max_token_len_per_gpu=2048",
|
||||
"data.max_length=1024",
|
||||
"trainer.logger=console",
|
||||
"trainer.project_name=mvp11-sft",
|
||||
f"trainer.experiment_name={submission_id}",
|
||||
f"trainer.total_epochs={spec.total_epochs}",
|
||||
f"trainer.total_training_steps={spec.total_training_steps}",
|
||||
f"trainer.save_freq={spec.save_freq}",
|
||||
"trainer.test_freq=-1",
|
||||
"trainer.resume_mode=disable",
|
||||
f"trainer.device={trainer_device}",
|
||||
f"trainer.default_local_dir={job_dir}/checkpoints",
|
||||
f"trainer.nnodes={spec.nnodes}",
|
||||
f"trainer.n_gpus_per_node={spec.n_gpus_per_node}",
|
||||
f"hydra.run.dir={job_dir}/logs/hydra",
|
||||
]
|
||||
return BuiltCommand(argv=argv)
|
||||
|
||||
raise ValueError(f"unsupported workload: {spec.workload}")
|
||||
|
||||
63
src/mvp/v1.1/py/mvp_v11/driver_entrypoint.py
Normal file
63
src/mvp/v1.1/py/mvp_v11/driver_entrypoint.py
Normal file
@ -0,0 +1,63 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import shlex
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def _preflight() -> None:
|
||||
print("MVP_PRECHECK_PYTHON:", sys.executable, flush=True)
|
||||
print("MVP_PRECHECK_PYTHONPATH:", os.environ.get("PYTHONPATH"), flush=True)
|
||||
print("MVP_PRECHECK_MVP_CODE_PATH:", os.environ.get("MVP_CODE_PATH"), flush=True)
|
||||
try:
|
||||
import verl # type: ignore
|
||||
|
||||
print("MVP_PRECHECK_VERL_FILE:", getattr(verl, "__file__", None), flush=True)
|
||||
except Exception as e:
|
||||
print("MVP_PRECHECK_VERL_IMPORT_ERROR:", repr(e), flush=True)
|
||||
|
||||
try:
|
||||
import mvp_marker # type: ignore
|
||||
|
||||
print("MVP_PRECHECK_MARKER:", getattr(mvp_marker, "MARKER", None), flush=True)
|
||||
except Exception as e:
|
||||
print("MVP_PRECHECK_MARKER_MISSING:", repr(e), flush=True)
|
||||
|
||||
|
||||
def main() -> int:
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--job-dir", required=True)
|
||||
parser.add_argument("cmd", nargs=argparse.REMAINDER)
|
||||
args = parser.parse_args()
|
||||
|
||||
job_dir = Path(args.job_dir)
|
||||
job_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
_preflight()
|
||||
|
||||
if not args.cmd:
|
||||
print("no command provided", file=sys.stderr)
|
||||
return 2
|
||||
|
||||
# argparse includes the leading "--" if the caller uses it; strip it.
|
||||
cmd = list(args.cmd)
|
||||
if cmd and cmd[0] == "--":
|
||||
cmd = cmd[1:]
|
||||
if not cmd:
|
||||
print("no command provided", file=sys.stderr)
|
||||
return 2
|
||||
|
||||
# Execute training command as a subprocess so that logs are captured by Ray job logs.
|
||||
cmd_str = " ".join(shlex.quote(x) for x in cmd)
|
||||
print("MVP_DRIVER_EXEC:", cmd_str, flush=True)
|
||||
|
||||
proc = subprocess.run(cmd, check=False)
|
||||
print("MVP_DRIVER_EXIT_CODE:", proc.returncode, flush=True)
|
||||
return proc.returncode
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
raise SystemExit(main())
|
||||
121
src/mvp/v1.1/py/mvp_v11/models.py
Normal file
121
src/mvp/v1.1/py/mvp_v11/models.py
Normal file
@ -0,0 +1,121 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
|
||||
def _require(d: dict[str, Any], key: str) -> Any:
|
||||
if key not in d or d[key] in (None, ""):
|
||||
raise ValueError(f"missing required field: {key}")
|
||||
return d[key]
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RayConfig:
|
||||
address: str
|
||||
shared_root: str
|
||||
entrypoint_num_cpus: float
|
||||
entrypoint_resources: dict[str, float]
|
||||
runtime_env_env_vars: dict[str, str]
|
||||
user_code_path: str
|
||||
|
||||
@staticmethod
|
||||
def from_dict(d: dict[str, Any]) -> "RayConfig":
|
||||
runtime_env = d.get("runtime_env") or {}
|
||||
env_vars = (runtime_env.get("env_vars") or {}) if isinstance(runtime_env, dict) else {}
|
||||
if not isinstance(env_vars, dict):
|
||||
raise ValueError("runtime_env.env_vars must be a mapping")
|
||||
|
||||
entrypoint_resources = d.get("entrypoint_resources") or {}
|
||||
if not isinstance(entrypoint_resources, dict):
|
||||
raise ValueError("entrypoint_resources must be a mapping")
|
||||
|
||||
return RayConfig(
|
||||
address=str(_require(d, "address")),
|
||||
shared_root=str(_require(d, "shared_root")),
|
||||
entrypoint_num_cpus=float(d.get("entrypoint_num_cpus", 1)),
|
||||
entrypoint_resources={str(k): float(v) for k, v in entrypoint_resources.items()},
|
||||
runtime_env_env_vars={str(k): str(v) for k, v in env_vars.items()},
|
||||
user_code_path=str(d.get("user_code_path", f"{_require(d, 'shared_root')}/user/code")),
|
||||
)
|
||||
|
||||
def to_public_dict(self) -> dict[str, Any]:
|
||||
return {
|
||||
"address": self.address,
|
||||
"shared_root": self.shared_root,
|
||||
"entrypoint_num_cpus": self.entrypoint_num_cpus,
|
||||
"entrypoint_resources": self.entrypoint_resources,
|
||||
"runtime_env": {"env_vars": self.runtime_env_env_vars},
|
||||
"user_code_path": self.user_code_path,
|
||||
}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class JobSpec:
|
||||
workload: str # ppo|grpo|sft
|
||||
submission_id: str | None
|
||||
code_path: str
|
||||
model_id: str
|
||||
|
||||
train_file: str
|
||||
val_file: str | None
|
||||
|
||||
nnodes: int
|
||||
n_gpus_per_node: int
|
||||
|
||||
total_epochs: int
|
||||
total_training_steps: int
|
||||
|
||||
save_freq: int
|
||||
test_freq: int | None
|
||||
|
||||
trainer_device: str | None # only for sft (driver-side device)
|
||||
|
||||
@staticmethod
|
||||
def from_dict(d: dict[str, Any]) -> "JobSpec":
|
||||
workload = str(_require(d, "workload"))
|
||||
if workload not in ("ppo", "grpo", "sft"):
|
||||
raise ValueError(f"unsupported workload: {workload}")
|
||||
|
||||
val_file = d.get("val_file", None)
|
||||
if val_file in ("", "null"):
|
||||
val_file = None
|
||||
|
||||
test_freq = d.get("test_freq", None)
|
||||
if test_freq in ("", "null"):
|
||||
test_freq = None
|
||||
|
||||
return JobSpec(
|
||||
workload=workload,
|
||||
submission_id=(str(d["submission_id"]) if d.get("submission_id") else None),
|
||||
code_path=str(_require(d, "code_path")),
|
||||
model_id=str(_require(d, "model_id")),
|
||||
train_file=str(_require(d, "train_file")),
|
||||
val_file=(str(val_file) if val_file is not None else None),
|
||||
nnodes=int(d.get("nnodes", 2)),
|
||||
n_gpus_per_node=int(d.get("n_gpus_per_node", 4)),
|
||||
total_epochs=int(d.get("total_epochs", 1)),
|
||||
total_training_steps=int(d.get("total_training_steps", 10)),
|
||||
save_freq=int(d.get("save_freq", 10)),
|
||||
test_freq=(int(test_freq) if test_freq is not None else None),
|
||||
trainer_device=(str(d.get("trainer_device")) if d.get("trainer_device") else None),
|
||||
)
|
||||
|
||||
def to_public_dict(self) -> dict[str, Any]:
|
||||
out: dict[str, Any] = {
|
||||
"workload": self.workload,
|
||||
"submission_id": self.submission_id or "",
|
||||
"code_path": self.code_path,
|
||||
"model_id": self.model_id,
|
||||
"train_file": self.train_file,
|
||||
"val_file": self.val_file,
|
||||
"nnodes": self.nnodes,
|
||||
"n_gpus_per_node": self.n_gpus_per_node,
|
||||
"total_epochs": self.total_epochs,
|
||||
"total_training_steps": self.total_training_steps,
|
||||
"save_freq": self.save_freq,
|
||||
"test_freq": self.test_freq,
|
||||
}
|
||||
if self.workload == "sft":
|
||||
out["trainer_device"] = self.trainer_device or "cpu"
|
||||
return out
|
||||
171
src/mvp/v1.1/py/mvp_v11/ray_job_tool.py
Normal file
171
src/mvp/v1.1/py/mvp_v11/ray_job_tool.py
Normal file
@ -0,0 +1,171 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import os
|
||||
import shlex
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import ray
|
||||
from ray.job_submission import JobSubmissionClient
|
||||
|
||||
from .builders import build_training_argv
|
||||
from .models import JobSpec, RayConfig
|
||||
from .yaml_io import dump_yaml
|
||||
|
||||
|
||||
def _ts() -> str:
|
||||
return datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
|
||||
|
||||
def _mkdir(p: Path) -> None:
|
||||
p.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
def _write_text(p: Path, content: str) -> None:
|
||||
_mkdir(p.parent)
|
||||
p.write_text(content, encoding="utf-8")
|
||||
|
||||
|
||||
def _write_json(p: Path, obj: Any) -> None:
|
||||
_write_text(p, json.dumps(obj, indent=2, ensure_ascii=False) + "\n")
|
||||
|
||||
|
||||
def _safe_basename(path: str) -> str:
|
||||
return path.rstrip("/").split("/")[-1]
|
||||
|
||||
|
||||
class RayJobTool:
|
||||
def __init__(self, cfg: RayConfig):
|
||||
self.cfg = cfg
|
||||
self.client = JobSubmissionClient(cfg.address)
|
||||
|
||||
def _job_dir(self, submission_id: str) -> str:
|
||||
return f"{self.cfg.shared_root}/jobs/{submission_id}"
|
||||
|
||||
def _runtime_env(self, spec: JobSpec) -> dict[str, Any]:
|
||||
env_vars = dict(self.cfg.runtime_env_env_vars)
|
||||
|
||||
# Default HF cache
|
||||
env_vars.setdefault("HF_HOME", f"{self.cfg.shared_root}/hf")
|
||||
env_vars.setdefault("HUGGINGFACE_HUB_CACHE", f"{self.cfg.shared_root}/hf/hub")
|
||||
env_vars.setdefault("TRANSFORMERS_CACHE", f"{self.cfg.shared_root}/hf/transformers")
|
||||
env_vars.setdefault("PYTHONUNBUFFERED", "1")
|
||||
|
||||
# Tool code path must be importable on workers (compose mounts v1.1 into all containers).
|
||||
# Place it before verl code to avoid interfering with verl import priority.
|
||||
tool_code_path = os.environ.get("MVP_TOOL_CODE_PATH", "/workspace/mvp/v1.1/py")
|
||||
|
||||
user_code_path = self.cfg.user_code_path
|
||||
code_path = spec.code_path
|
||||
|
||||
existing = env_vars.get("PYTHONPATH", "")
|
||||
prefix = f"{tool_code_path}:{code_path}:{user_code_path}"
|
||||
env_vars["PYTHONPATH"] = f"{prefix}:{existing}" if existing else prefix
|
||||
|
||||
# For debugging / log visibility
|
||||
env_vars["MVP_CODE_PATH"] = code_path
|
||||
|
||||
# SFT: ensure ray.init() connects to the cluster
|
||||
if spec.workload == "sft":
|
||||
env_vars.setdefault("RAY_ADDRESS", "auto")
|
||||
|
||||
return {"env_vars": env_vars}
|
||||
|
||||
def submit(self, spec: JobSpec, no_wait: bool) -> str:
|
||||
submission_id = spec.submission_id or f"mvp11_{spec.workload}_{_ts()}_{os.getpid()}"
|
||||
job_dir = self._job_dir(submission_id)
|
||||
|
||||
built = build_training_argv(spec, submission_id=submission_id, job_dir=job_dir)
|
||||
entrypoint_argv = [
|
||||
"python3",
|
||||
"-m",
|
||||
"mvp_v11.driver_entrypoint",
|
||||
"--job-dir",
|
||||
job_dir,
|
||||
*built.argv,
|
||||
]
|
||||
entrypoint = " ".join(shlex.quote(x) for x in entrypoint_argv)
|
||||
|
||||
runtime_env = self._runtime_env(spec)
|
||||
|
||||
# Prepare job artifacts directory
|
||||
job_root = Path(job_dir)
|
||||
_mkdir(job_root / "config")
|
||||
_mkdir(job_root / "logs")
|
||||
_mkdir(job_root / "debug")
|
||||
_mkdir(job_root / "checkpoints")
|
||||
|
||||
_write_text(job_root / "config" / "ray_config.yaml", dump_yaml(self.cfg.to_public_dict()))
|
||||
_write_text(job_root / "config" / "jobspec.yaml", dump_yaml(spec.to_public_dict()))
|
||||
_write_json(job_root / "config" / "submit_payload.json", {
|
||||
"submission_id": submission_id,
|
||||
"address": self.cfg.address,
|
||||
"entrypoint": entrypoint,
|
||||
"entrypoint_num_cpus": self.cfg.entrypoint_num_cpus,
|
||||
"entrypoint_resources": self.cfg.entrypoint_resources,
|
||||
"runtime_env": runtime_env,
|
||||
})
|
||||
|
||||
# Pre-submit debug snapshot (ray cluster resources via ray.init)
|
||||
try:
|
||||
ray.init(address="auto", ignore_reinit_error=True, log_to_driver=False)
|
||||
_write_json(job_root / "debug" / "ray_cluster_resources_pre.json", ray.cluster_resources())
|
||||
_write_json(job_root / "debug" / "ray_available_resources_pre.json", ray.available_resources())
|
||||
except Exception as e:
|
||||
_write_text(job_root / "debug" / "ray_resources_pre.error.txt", repr(e) + "\n")
|
||||
|
||||
try:
|
||||
submitted = self.client.submit_job(
|
||||
entrypoint=entrypoint,
|
||||
submission_id=submission_id,
|
||||
runtime_env=runtime_env,
|
||||
entrypoint_num_cpus=self.cfg.entrypoint_num_cpus,
|
||||
entrypoint_resources=self.cfg.entrypoint_resources,
|
||||
)
|
||||
except Exception as e:
|
||||
_write_text(job_root / "logs" / "submit.error.txt", repr(e) + "\n")
|
||||
raise
|
||||
|
||||
_write_text(job_root / "config" / "ray_submission_id.txt", submitted + "\n")
|
||||
|
||||
# Post-submit debug snapshot via SDK
|
||||
try:
|
||||
jobs = self.client.list_jobs()
|
||||
_write_text(
|
||||
job_root / "debug" / "ray_job_list_post.json",
|
||||
json.dumps([_job_details_to_dict(j) for j in jobs], indent=2) + "\n",
|
||||
)
|
||||
except Exception as e:
|
||||
_write_text(job_root / "debug" / "ray_job_list_post.error.txt", repr(e) + "\n")
|
||||
|
||||
if not no_wait:
|
||||
# caller can separately wait; keep submit non-blocking by default in scripts
|
||||
pass
|
||||
|
||||
return submitted
|
||||
|
||||
def status(self, submission_id: str) -> str:
|
||||
return str(self.client.get_job_status(submission_id))
|
||||
|
||||
def stop(self, submission_id: str) -> bool:
|
||||
return bool(self.client.stop_job(submission_id))
|
||||
|
||||
def logs(self, submission_id: str) -> str:
|
||||
return self.client.get_job_logs(submission_id)
|
||||
|
||||
def list(self) -> list[dict[str, Any]]:
|
||||
return [_job_details_to_dict(j) for j in self.client.list_jobs()]
|
||||
|
||||
|
||||
def _job_details_to_dict(obj: Any) -> dict[str, Any]:
|
||||
# Ray uses pydantic models internally, but depending on bundled pydantic version
|
||||
# we might get `.model_dump()` (v2) or `.dict()` (v1).
|
||||
if hasattr(obj, "model_dump"):
|
||||
return obj.model_dump() # type: ignore[no-any-return]
|
||||
if hasattr(obj, "dict"):
|
||||
return obj.dict() # type: ignore[no-any-return]
|
||||
if hasattr(obj, "__dict__"):
|
||||
return dict(obj.__dict__)
|
||||
return {"repr": repr(obj)}
|
||||
21
src/mvp/v1.1/py/mvp_v11/yaml_io.py
Normal file
21
src/mvp/v1.1/py/mvp_v11/yaml_io.py
Normal file
@ -0,0 +1,21 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
def load_yaml(path: str) -> dict[str, Any]:
|
||||
p = Path(path)
|
||||
data = yaml.safe_load(p.read_text(encoding="utf-8"))
|
||||
if data is None:
|
||||
return {}
|
||||
if not isinstance(data, dict):
|
||||
raise ValueError(f"yaml root must be a mapping: {path}")
|
||||
return data
|
||||
|
||||
|
||||
def dump_yaml(data: dict[str, Any]) -> str:
|
||||
return yaml.safe_dump(data, sort_keys=False, allow_unicode=True)
|
||||
|
||||
2
src/mvp/v1.1/py/requirements.txt
Normal file
2
src/mvp/v1.1/py/requirements.txt
Normal file
@ -0,0 +1,2 @@
|
||||
PyYAML>=6.0.1
|
||||
|
||||
69
src/mvp/v1.1/py/run.py
Normal file
69
src/mvp/v1.1/py/run.py
Normal file
@ -0,0 +1,69 @@
|
||||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
def _ensure_import_path() -> None:
|
||||
# Allow `python3 /workspace/.../py/run.py` to import `mvp_v11.*`
|
||||
here = os.path.dirname(os.path.abspath(__file__))
|
||||
if here not in sys.path:
|
||||
sys.path.insert(0, here)
|
||||
|
||||
|
||||
def main() -> int:
|
||||
_ensure_import_path()
|
||||
|
||||
from mvp_v11.models import JobSpec, RayConfig
|
||||
from mvp_v11.ray_job_tool import RayJobTool
|
||||
from mvp_v11.yaml_io import load_yaml
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--config", required=True, help="Ray base config yaml")
|
||||
parser.add_argument("--jobspec", help="Training jobspec yaml (required for submit)")
|
||||
parser.add_argument("--action", required=True, choices=["submit", "status", "stop", "logs", "list"])
|
||||
parser.add_argument("--submission-id", help="For status/stop/logs")
|
||||
parser.add_argument("--no-wait", action="store_true", help="Submit and return immediately")
|
||||
parser.add_argument("--tail", type=int, default=0, help="Tail N lines for logs")
|
||||
args = parser.parse_args()
|
||||
|
||||
cfg = RayConfig.from_dict(load_yaml(args.config))
|
||||
tool = RayJobTool(cfg)
|
||||
|
||||
if args.action == "submit":
|
||||
if not args.jobspec:
|
||||
raise SystemExit("--jobspec is required for submit")
|
||||
spec = JobSpec.from_dict(load_yaml(args.jobspec))
|
||||
submitted = tool.submit(spec, no_wait=args.no_wait)
|
||||
print(submitted)
|
||||
return 0
|
||||
|
||||
if args.action in ("status", "stop", "logs"):
|
||||
sid = args.submission_id or ""
|
||||
if not sid:
|
||||
raise SystemExit("--submission-id is required for status/stop/logs")
|
||||
if args.action == "status":
|
||||
print(tool.status(sid))
|
||||
return 0
|
||||
if args.action == "stop":
|
||||
print(tool.stop(sid))
|
||||
return 0
|
||||
logs = tool.logs(sid)
|
||||
if args.tail and args.tail > 0:
|
||||
lines = logs.splitlines()
|
||||
logs = "\n".join(lines[-args.tail :]) + ("\n" if lines else "")
|
||||
print(logs, end="")
|
||||
return 0
|
||||
|
||||
if args.action == "list":
|
||||
print(json.dumps(tool.list(), indent=2))
|
||||
return 0
|
||||
|
||||
raise SystemExit(f"unknown action: {args.action}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
raise SystemExit(main())
|
||||
57
src/mvp/v1.1/py/sitecustomize.py
Normal file
57
src/mvp/v1.1/py/sitecustomize.py
Normal file
@ -0,0 +1,57 @@
|
||||
"""
|
||||
Job-scoped compatibility shims loaded automatically by Python at startup.
|
||||
|
||||
This is intentionally lightweight and safe-by-default:
|
||||
- Only patches missing symbols.
|
||||
- Never raises (best-effort).
|
||||
|
||||
Primary use case in MVP v1.1:
|
||||
- Allow multiple `verl` versions (e.g. v0.6.0 vs v0.6.1) to run on the same
|
||||
base image where `sglang` APIs may differ slightly.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def _patch_sglang_get_ip() -> None:
|
||||
try:
|
||||
import sglang.srt.utils as srt_utils # type: ignore
|
||||
except Exception:
|
||||
return
|
||||
|
||||
if hasattr(srt_utils, "get_ip"):
|
||||
return
|
||||
|
||||
def get_ip() -> str:
|
||||
# Best-effort local IP without external dependency.
|
||||
try:
|
||||
import socket
|
||||
|
||||
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
||||
try:
|
||||
# Doesn't send packets; used to pick the default route/interface.
|
||||
s.connect(("8.8.8.8", 80))
|
||||
return str(s.getsockname()[0])
|
||||
finally:
|
||||
s.close()
|
||||
except Exception:
|
||||
# Fallback: hostname resolution
|
||||
try:
|
||||
import socket
|
||||
|
||||
return str(socket.gethostbyname(socket.gethostname()))
|
||||
except Exception:
|
||||
return "127.0.0.1"
|
||||
|
||||
try:
|
||||
setattr(srt_utils, "get_ip", get_ip)
|
||||
except Exception:
|
||||
return
|
||||
|
||||
|
||||
try:
|
||||
_patch_sglang_get_ip()
|
||||
except Exception:
|
||||
# Never block interpreter startup.
|
||||
pass
|
||||
|
||||
42
src/mvp/v1.1/scripts/00_prereq_check.sh
Normal file
42
src/mvp/v1.1/scripts/00_prereq_check.sh
Normal file
@ -0,0 +1,42 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
echo "[host] prereq check"
|
||||
|
||||
require_cmd docker
|
||||
require_cmd bash
|
||||
|
||||
if ! docker info >/dev/null 2>&1; then
|
||||
echo "docker is not available (docker info failed)" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! docker compose version >/dev/null 2>&1; then
|
||||
echo "docker compose is not available" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v nvidia-smi >/dev/null 2>&1; then
|
||||
echo "WARN: nvidia-smi not found on host; GPU validation skipped"
|
||||
else
|
||||
echo "[host] GPU summary"
|
||||
nvidia-smi -L || true
|
||||
fi
|
||||
|
||||
echo "[host] ensure shared dirs exist under ../shared"
|
||||
mkdir -p "${ROOT_DIR}/../shared"/{datasets,hf,jobs,outputs,ray,common,user}
|
||||
mkdir -p "${ROOT_DIR}/../shared/common"/{code,datasets,models}
|
||||
mkdir -p "${ROOT_DIR}/../shared/user"/{code}
|
||||
|
||||
echo "[host] ensure verl repo exists under ../verl (required by prepare scripts)"
|
||||
if [[ ! -d "${ROOT_DIR}/../verl" ]]; then
|
||||
echo "missing ../verl. On remote, ensure /home2/argus/infra/mvp/verl exists (git clone volcengine/verl)." >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "ok"
|
||||
|
||||
16
src/mvp/v1.1/scripts/01_up.sh
Normal file
16
src/mvp/v1.1/scripts/01_up.sh
Normal file
@ -0,0 +1,16 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
if [[ "${SKIP_CLEANUP_V1:-0}" != "1" ]]; then
|
||||
"${SCRIPT_DIR}/03_cleanup_v1_legacy.sh" || true
|
||||
fi
|
||||
|
||||
echo "[host] docker compose up -d (v1.1)"
|
||||
dc up -d
|
||||
|
||||
echo "[host] containers:"
|
||||
docker ps --format 'table {{.Names}}\t{{.Status}}\t{{.Ports}}' | (head -n 1 && grep -E "mvp11-ray-") || true
|
||||
12
src/mvp/v1.1/scripts/02_down.sh
Normal file
12
src/mvp/v1.1/scripts/02_down.sh
Normal file
@ -0,0 +1,12 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
echo "[host] docker compose down (v1.1)"
|
||||
dc down -v || true
|
||||
|
||||
echo "[host] done"
|
||||
|
||||
16
src/mvp/v1.1/scripts/03_cleanup_v1_legacy.sh
Normal file
16
src/mvp/v1.1/scripts/03_cleanup_v1_legacy.sh
Normal file
@ -0,0 +1,16 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
echo "[host] cleanup v1 legacy containers (best-effort)"
|
||||
|
||||
LEGACY=(mvp-ray-head mvp-ray-worker-0 mvp-ray-worker-1)
|
||||
|
||||
for c in "${LEGACY[@]}"; do
|
||||
if docker ps -a --format '{{.Names}}' | grep -qx "${c}"; then
|
||||
echo "[host] removing legacy container: ${c}"
|
||||
docker rm -f "${c}" >/dev/null 2>&1 || true
|
||||
fi
|
||||
done
|
||||
|
||||
echo "[host] legacy cleanup done"
|
||||
|
||||
23
src/mvp/v1.1/scripts/05_ensure_verl_repo.sh
Normal file
23
src/mvp/v1.1/scripts/05_ensure_verl_repo.sh
Normal file
@ -0,0 +1,23 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
VERL_DIR="${ROOT_DIR}/../verl"
|
||||
|
||||
echo "[host] ensure verl repo exists at: ${VERL_DIR}"
|
||||
if [[ -d "${VERL_DIR}/.git" ]]; then
|
||||
echo "verl_repo_exists: skip"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
if [[ -d "${VERL_DIR}" && ! -d "${VERL_DIR}/.git" ]]; then
|
||||
echo "ERROR: ${VERL_DIR} exists but is not a git repo; please fix manually." >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "cloning volcengine/verl -> ${VERL_DIR}"
|
||||
git clone https://github.com/volcengine/verl.git "${VERL_DIR}"
|
||||
|
||||
10
src/mvp/v1.1/scripts/12_install_py_deps.sh
Normal file
10
src/mvp/v1.1/scripts/12_install_py_deps.sh
Normal file
@ -0,0 +1,10 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
echo "[head] install python deps for v1.1 SDK submitter (PyYAML)"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "pip install -r /workspace/mvp/v1.1/py/requirements.txt"
|
||||
|
||||
18
src/mvp/v1.1/scripts/20_start_head.sh
Normal file
18
src/mvp/v1.1/scripts/20_start_head.sh
Normal file
@ -0,0 +1,18 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
HEAD_IP="$(container_ip "${HEAD_CONTAINER}")"
|
||||
|
||||
echo "[head] ray stop (best-effort)"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray stop --force || true"
|
||||
|
||||
echo "[head] start ray head (CPU=0 GPU=0): ${HEAD_IP}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray start --head --node-ip-address='${HEAD_IP}' --port=6379 --dashboard-host=0.0.0.0 --dashboard-port=8265 --num-cpus=0 --num-gpus=0 --disable-usage-stats"
|
||||
|
||||
echo "[head] ray status"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray status || true"
|
||||
|
||||
26
src/mvp/v1.1/scripts/21_start_workers.sh
Normal file
26
src/mvp/v1.1/scripts/21_start_workers.sh
Normal file
@ -0,0 +1,26 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
HEAD_IP="$(container_ip "${HEAD_CONTAINER}")"
|
||||
HEAD_ADDR="${HEAD_IP}:6379"
|
||||
|
||||
start_one() {
|
||||
local worker="$1"
|
||||
local ip
|
||||
ip="$(container_ip "${worker}")"
|
||||
echo "[${worker}] ray stop (best-effort)"
|
||||
dexec "${worker}" bash -lc "ray stop --force || true"
|
||||
echo "[${worker}] start ray worker -> head ${HEAD_ADDR}"
|
||||
dexec "${worker}" bash -lc "ray start --address='${HEAD_ADDR}' --node-ip-address='${ip}' --resources='{\"worker_node\": 100}' --disable-usage-stats"
|
||||
}
|
||||
|
||||
start_one "${WORKER0_CONTAINER}"
|
||||
start_one "${WORKER1_CONTAINER}"
|
||||
|
||||
echo "[head] ray status"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray status || true"
|
||||
|
||||
86
src/mvp/v1.1/scripts/30_prepare_data_and_model.sh
Normal file
86
src/mvp/v1.1/scripts/30_prepare_data_and_model.sh
Normal file
@ -0,0 +1,86 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
MODEL_ID="${MODEL_ID:-Qwen/Qwen2.5-0.5B-Instruct}"
|
||||
|
||||
PPO_DATA_DIR="${SHARED_ROOT}/datasets/gsm8k"
|
||||
SFT_DATA_DIR="${SHARED_ROOT}/datasets/gsm8k_sft"
|
||||
|
||||
CODE_SNAPSHOT_DIR="${SHARED_ROOT}/common/code/verl/verl_repo"
|
||||
|
||||
echo "[head] ensure dataset dirs exist"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "mkdir -p '${PPO_DATA_DIR}' '${SFT_DATA_DIR}'"
|
||||
|
||||
echo "[head] prepare PPO dataset (gsm8k RL parquet) -> ${PPO_DATA_DIR}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "if [[ -f '${PPO_DATA_DIR}/train.parquet' && -f '${PPO_DATA_DIR}/test.parquet' ]]; then echo 'ppo_dataset_exists: skip'; else python3 /workspace/verl/examples/data_preprocess/gsm8k.py --local_save_dir '${PPO_DATA_DIR}'; fi"
|
||||
|
||||
echo "[head] prepare SFT dataset (gsm8k messages parquet) -> ${SFT_DATA_DIR}"
|
||||
if dexec "${HEAD_CONTAINER}" bash -lc "test -f '${SFT_DATA_DIR}/train.parquet'"; then
|
||||
echo "[head] sft_dataset_exists: skip"
|
||||
else
|
||||
SFT_PY_CODE="$(cat <<'PY'
|
||||
import os
|
||||
|
||||
import pandas as pd
|
||||
from datasets import load_dataset
|
||||
|
||||
out_dir = os.environ["SFT_DATA_DIR"]
|
||||
os.makedirs(out_dir, exist_ok=True)
|
||||
|
||||
ds = load_dataset("openai/gsm8k", "main")
|
||||
|
||||
instruction = "Let's think step by step and output the final answer after \"####\"."
|
||||
|
||||
def to_messages(example):
|
||||
q = example["question"].strip() + " " + instruction
|
||||
a = example["answer"]
|
||||
return {
|
||||
"messages": [
|
||||
{"role": "user", "content": q},
|
||||
{"role": "assistant", "content": a},
|
||||
]
|
||||
}
|
||||
|
||||
train = ds["train"].map(to_messages, remove_columns=ds["train"].column_names)
|
||||
test = ds["test"].map(to_messages, remove_columns=ds["test"].column_names)
|
||||
|
||||
pd.DataFrame(train).to_parquet(os.path.join(out_dir, "train.parquet"), index=False)
|
||||
pd.DataFrame(test).to_parquet(os.path.join(out_dir, "test.parquet"), index=False)
|
||||
|
||||
print("sft_dataset_written_ok:", out_dir)
|
||||
PY
|
||||
)"
|
||||
printf "%s\n" "${SFT_PY_CODE}" | dexec "${HEAD_CONTAINER}" bash -lc "SFT_DATA_DIR='${SFT_DATA_DIR}' python3 -"
|
||||
fi
|
||||
|
||||
echo "[head] ensure model cached to persistent HF_HOME (idempotent) -> ${MODEL_ID}"
|
||||
PY_CODE="$(cat <<'PY'
|
||||
import os
|
||||
|
||||
model_id = os.environ["MODEL_ID"]
|
||||
|
||||
hf_home = os.environ.get("HF_HOME", "/private/hf")
|
||||
os.environ.setdefault("HF_HOME", hf_home)
|
||||
os.environ.setdefault("HUGGINGFACE_HUB_CACHE", os.path.join(hf_home, "hub"))
|
||||
os.environ.setdefault("TRANSFORMERS_CACHE", os.path.join(hf_home, "transformers"))
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
try:
|
||||
snapshot_download(repo_id=model_id, local_files_only=True)
|
||||
print("model_cache_exists: skip", model_id)
|
||||
except Exception:
|
||||
print("model_cache_missing: downloading", model_id)
|
||||
snapshot_download(repo_id=model_id)
|
||||
print("model_cached_ok:", model_id)
|
||||
PY
|
||||
)"
|
||||
|
||||
printf "%s\n" "${PY_CODE}" | dexec "${HEAD_CONTAINER}" bash -lc "MODEL_ID='${MODEL_ID}' python3 -"
|
||||
|
||||
echo "[head] snapshot verl repo into shared common code path (idempotent best-effort) -> ${CODE_SNAPSHOT_DIR}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "mkdir -p '${CODE_SNAPSHOT_DIR}' && if command -v rsync >/dev/null 2>&1; then rsync -a --delete /workspace/verl/ '${CODE_SNAPSHOT_DIR}/'; else rm -rf '${CODE_SNAPSHOT_DIR:?}/'* && cp -a /workspace/verl/. '${CODE_SNAPSHOT_DIR}/'; fi && echo 'code_snapshot_ok'"
|
||||
42
src/mvp/v1.1/scripts/31_snapshot_verl_code.sh
Normal file
42
src/mvp/v1.1/scripts/31_snapshot_verl_code.sh
Normal file
@ -0,0 +1,42 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
# Create an immutable-ish code snapshot under:
|
||||
# ${SHARED_ROOT}/common/code/verl/<code_id>
|
||||
#
|
||||
# By default, code_id is the git commit hash of /workspace/verl (mounted from ../verl).
|
||||
#
|
||||
# This enables job-level multi-version coexistence via runtime_env PYTHONPATH injection.
|
||||
|
||||
CODE_ID="${CODE_ID:-}"
|
||||
|
||||
if [[ -z "${CODE_ID}" ]]; then
|
||||
CODE_ID="$(dexec "${HEAD_CONTAINER}" bash -lc "git config --global --add safe.directory /workspace/verl >/dev/null 2>&1 || true; git -C /workspace/verl rev-parse HEAD")"
|
||||
fi
|
||||
|
||||
DEST_DIR="${SHARED_ROOT}/common/code/verl/${CODE_ID}"
|
||||
|
||||
echo "[head] snapshot verl repo -> ${DEST_DIR}"
|
||||
|
||||
if dexec "${HEAD_CONTAINER}" bash -lc "test -d '${DEST_DIR}'"; then
|
||||
echo "[head] code_snapshot_exists: skip"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "mkdir -p '${DEST_DIR}'"
|
||||
|
||||
# Copy code (no .git needed for runtime)
|
||||
if dexec "${HEAD_CONTAINER}" bash -lc "command -v rsync >/dev/null 2>&1"; then
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "rsync -a --delete --exclude='.git' /workspace/verl/ '${DEST_DIR}/'"
|
||||
else
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "tar -C /workspace/verl -cf - --exclude='.git' . | tar -C '${DEST_DIR}' -xf -"
|
||||
fi
|
||||
|
||||
# Add a tiny marker module for multi-version validation in Ray job logs.
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "printf \"%s\\n\" \"MARKER = '${CODE_ID}'\" > '${DEST_DIR}/mvp_marker.py'"
|
||||
|
||||
echo "[head] code_snapshot_ok: ${CODE_ID}"
|
||||
39
src/mvp/v1.1/scripts/32_clone_verl_tags.sh
Normal file
39
src/mvp/v1.1/scripts/32_clone_verl_tags.sh
Normal file
@ -0,0 +1,39 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
VERL_REPO_URL="${VERL_REPO_URL:-https://github.com/volcengine/verl.git}"
|
||||
DEST_BASE="${SHARED_ROOT}/common/code/verl"
|
||||
|
||||
TAGS=("v0.6.0" "v0.6.1")
|
||||
|
||||
echo "[head] ensure base dir: ${DEST_BASE}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "mkdir -p '${DEST_BASE}'"
|
||||
|
||||
for tag in "${TAGS[@]}"; do
|
||||
dest="${DEST_BASE}/verl_${tag}"
|
||||
echo "[head] prepare verl tag ${tag} -> ${dest}"
|
||||
|
||||
verify_repo_cmd="test -d '${dest}/.git' && git -C '${dest}' rev-parse --is-inside-work-tree >/dev/null 2>&1"
|
||||
if dexec "${HEAD_CONTAINER}" bash -lc "${verify_repo_cmd}"; then
|
||||
echo "[head] exists: verified git repo: ${dest}"
|
||||
else
|
||||
echo "[head] cloning ${tag} (retry with HTTP/1.1 if needed)"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "rm -rf '${dest}'"
|
||||
# Retry a few times because GitHub over HTTP/2 can occasionally fail with curl framing errors/timeouts.
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "set -euo pipefail; for i in 1 2 3; do echo \"clone_attempt=\\$i\"; if git -c http.version=HTTP/1.1 clone --filter=blob:none --single-branch --branch '${tag}' --depth 1 '${VERL_REPO_URL}' '${dest}'; then exit 0; fi; rm -rf '${dest}'; sleep 3; done; exit 1"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "${verify_repo_cmd}" || { echo \"[head] clone failed or repo invalid: ${dest}\" >&2; exit 1; }
|
||||
fi
|
||||
|
||||
# Avoid git safe.directory issues when reading repo state
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "git config --global --add safe.directory '${dest}' >/dev/null 2>&1 || true"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "printf 'tag='; git -C '${dest}' describe --tags --exact-match 2>/dev/null || true; printf '\\nhead='; git -C '${dest}' rev-parse HEAD; printf '\\n'"
|
||||
|
||||
# Add marker for multi-version verification in Ray job logs
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "printf \"%s\\n\" \"MARKER = '${tag}'\" > '${dest}/mvp_marker.py'"
|
||||
done
|
||||
|
||||
echo "[head] done"
|
||||
72
src/mvp/v1.1/scripts/40_submit_ppo_epoch1.sh
Normal file
72
src/mvp/v1.1/scripts/40_submit_ppo_epoch1.sh
Normal file
@ -0,0 +1,72 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
SUBMISSION_ID="${SUBMISSION_ID:-mvp11_ppo_$(timestamp)_$RANDOM}"
|
||||
JOB_DIR="${SHARED_ROOT}/jobs/${SUBMISSION_ID}"
|
||||
|
||||
MODEL_ID="${MODEL_ID:-Qwen/Qwen2.5-0.5B-Instruct}"
|
||||
TRAIN_FILE="${SHARED_ROOT}/datasets/gsm8k/train.parquet"
|
||||
VAL_FILE="${SHARED_ROOT}/datasets/gsm8k/test.parquet"
|
||||
|
||||
CODE_PATH="${CODE_PATH:-${SHARED_ROOT}/common/code/verl/verl_repo}"
|
||||
TOTAL_TRAINING_STEPS="${TOTAL_TRAINING_STEPS:-10}"
|
||||
SAVE_FREQ="${SAVE_FREQ:-10}"
|
||||
TEST_FREQ="${TEST_FREQ:--1}"
|
||||
|
||||
echo "[head] create job dir: ${JOB_DIR}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "mkdir -p '${JOB_DIR}'/{logs,checkpoints,config,debug}"
|
||||
|
||||
SUBMIT_CMD="python3 -m verl.trainer.main_ppo \
|
||||
data.train_files=${TRAIN_FILE} \
|
||||
data.val_files=${VAL_FILE} \
|
||||
data.train_batch_size=256 \
|
||||
data.max_prompt_length=512 \
|
||||
data.max_response_length=512 \
|
||||
actor_rollout_ref.model.path=${MODEL_ID} \
|
||||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||||
actor_rollout_ref.actor.ppo_mini_batch_size=64 \
|
||||
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \
|
||||
actor_rollout_ref.rollout.name=sglang \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
|
||||
actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \
|
||||
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \
|
||||
critic.optim.lr=1e-5 \
|
||||
critic.model.path=${MODEL_ID} \
|
||||
critic.ppo_micro_batch_size_per_gpu=4 \
|
||||
algorithm.kl_ctrl.kl_coef=0.001 \
|
||||
trainer.logger=console \
|
||||
trainer.val_before_train=False \
|
||||
trainer.n_gpus_per_node=4 \
|
||||
trainer.nnodes=2 \
|
||||
trainer.save_freq=${SAVE_FREQ} \
|
||||
trainer.test_freq=${TEST_FREQ} \
|
||||
trainer.total_epochs=1 \
|
||||
trainer.total_training_steps=${TOTAL_TRAINING_STEPS} \
|
||||
trainer.resume_mode=disable \
|
||||
trainer.default_local_dir=${JOB_DIR}/checkpoints \
|
||||
+ray_kwargs.ray_init.address=auto \
|
||||
hydra.run.dir=${JOB_DIR}/logs/hydra"
|
||||
|
||||
printf "%s\n" "${SUBMIT_CMD}" | dexec "${HEAD_CONTAINER}" bash -lc "cat > '${JOB_DIR}/config/submit_cmd.txt'"
|
||||
|
||||
echo "[head] debug snapshot (pre-submit)"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray status >'${JOB_DIR}/debug/ray_status_pre.txt' 2>&1 || true"
|
||||
|
||||
echo "[head] submit PPO via ray job submit (driver forced on worker)"
|
||||
SUBMIT_OUT="$(dexec "${HEAD_CONTAINER}" bash -lc "ray job submit --address='${RAY_DASHBOARD_ADDR}' --submission-id='${SUBMISSION_ID}' --entrypoint-num-cpus=1 --entrypoint-resources='{\"worker_node\": 1}' --runtime-env-json='{\"env_vars\":{\"HF_HOME\":\"${SHARED_ROOT}/hf\",\"HUGGINGFACE_HUB_CACHE\":\"${SHARED_ROOT}/hf/hub\",\"TRANSFORMERS_CACHE\":\"${SHARED_ROOT}/hf/transformers\",\"HF_ENDPOINT\":\"https://hf-mirror.com\",\"PYTHONUNBUFFERED\":\"1\",\"PYTHONPATH\":\"${CODE_PATH}:${SHARED_ROOT}/user/code\"}}' --no-wait -- ${SUBMIT_CMD}")"
|
||||
|
||||
printf "%s\n" "${SUBMIT_OUT}"
|
||||
printf "%s\n" "${SUBMIT_OUT}" | dexec "${HEAD_CONTAINER}" bash -lc "cat > '${JOB_DIR}/logs/ray_job_submit.out'"
|
||||
echo "${SUBMISSION_ID}" | dexec "${HEAD_CONTAINER}" bash -lc "cat > '${JOB_DIR}/config/ray_submission_id.txt'"
|
||||
|
||||
echo "[head] debug snapshot (post-submit)"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray job list >'${JOB_DIR}/debug/ray_job_list_post.txt' 2>&1 || true"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray status >'${JOB_DIR}/debug/ray_status_post.txt' 2>&1 || true"
|
||||
|
||||
echo "submitted: ${SUBMISSION_ID}"
|
||||
echo "job dir: ${JOB_DIR}"
|
||||
73
src/mvp/v1.1/scripts/41_submit_grpo_epoch1.sh
Normal file
73
src/mvp/v1.1/scripts/41_submit_grpo_epoch1.sh
Normal file
@ -0,0 +1,73 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
SUBMISSION_ID="${SUBMISSION_ID:-mvp11_grpo_$(timestamp)_$RANDOM}"
|
||||
JOB_DIR="${SHARED_ROOT}/jobs/${SUBMISSION_ID}"
|
||||
|
||||
MODEL_ID="${MODEL_ID:-Qwen/Qwen2.5-0.5B-Instruct}"
|
||||
TRAIN_FILE="${SHARED_ROOT}/datasets/gsm8k/train.parquet"
|
||||
VAL_FILE="${SHARED_ROOT}/datasets/gsm8k/test.parquet"
|
||||
|
||||
CODE_PATH="${CODE_PATH:-${SHARED_ROOT}/common/code/verl/verl_repo}"
|
||||
TOTAL_TRAINING_STEPS="${TOTAL_TRAINING_STEPS:-10}"
|
||||
SAVE_FREQ="${SAVE_FREQ:-10}"
|
||||
TEST_FREQ="${TEST_FREQ:--1}"
|
||||
|
||||
echo "[head] create job dir: ${JOB_DIR}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "mkdir -p '${JOB_DIR}'/{logs,checkpoints,config,debug}"
|
||||
|
||||
SUBMIT_CMD="python3 -m verl.trainer.main_ppo \
|
||||
data.train_files=${TRAIN_FILE} \
|
||||
data.val_files=${VAL_FILE} \
|
||||
data.train_batch_size=256 \
|
||||
data.max_prompt_length=512 \
|
||||
data.max_response_length=512 \
|
||||
actor_rollout_ref.model.path=${MODEL_ID} \
|
||||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||||
actor_rollout_ref.actor.ppo_mini_batch_size=64 \
|
||||
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \
|
||||
actor_rollout_ref.rollout.name=sglang \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
|
||||
actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \
|
||||
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \
|
||||
critic.optim.lr=1e-5 \
|
||||
critic.model.path=${MODEL_ID} \
|
||||
critic.ppo_micro_batch_size_per_gpu=4 \
|
||||
algorithm.adv_estimator=grpo \
|
||||
algorithm.kl_ctrl.kl_coef=0.001 \
|
||||
trainer.logger=console \
|
||||
trainer.val_before_train=False \
|
||||
trainer.n_gpus_per_node=4 \
|
||||
trainer.nnodes=2 \
|
||||
trainer.save_freq=${SAVE_FREQ} \
|
||||
trainer.test_freq=${TEST_FREQ} \
|
||||
trainer.total_epochs=1 \
|
||||
trainer.total_training_steps=${TOTAL_TRAINING_STEPS} \
|
||||
trainer.resume_mode=disable \
|
||||
trainer.default_local_dir=${JOB_DIR}/checkpoints \
|
||||
+ray_kwargs.ray_init.address=auto \
|
||||
hydra.run.dir=${JOB_DIR}/logs/hydra"
|
||||
|
||||
printf "%s\n" "${SUBMIT_CMD}" | dexec "${HEAD_CONTAINER}" bash -lc "cat > '${JOB_DIR}/config/submit_cmd.txt'"
|
||||
|
||||
echo "[head] debug snapshot (pre-submit)"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray status >'${JOB_DIR}/debug/ray_status_pre.txt' 2>&1 || true"
|
||||
|
||||
echo "[head] submit GRPO via ray job submit (driver forced on worker)"
|
||||
SUBMIT_OUT="$(dexec "${HEAD_CONTAINER}" bash -lc "ray job submit --address='${RAY_DASHBOARD_ADDR}' --submission-id='${SUBMISSION_ID}' --entrypoint-num-cpus=1 --entrypoint-resources='{\"worker_node\": 1}' --runtime-env-json='{\"env_vars\":{\"HF_HOME\":\"${SHARED_ROOT}/hf\",\"HUGGINGFACE_HUB_CACHE\":\"${SHARED_ROOT}/hf/hub\",\"TRANSFORMERS_CACHE\":\"${SHARED_ROOT}/hf/transformers\",\"HF_ENDPOINT\":\"https://hf-mirror.com\",\"PYTHONUNBUFFERED\":\"1\",\"PYTHONPATH\":\"${CODE_PATH}:${SHARED_ROOT}/user/code\"}}' --no-wait -- ${SUBMIT_CMD}")"
|
||||
|
||||
printf "%s\n" "${SUBMIT_OUT}"
|
||||
printf "%s\n" "${SUBMIT_OUT}" | dexec "${HEAD_CONTAINER}" bash -lc "cat > '${JOB_DIR}/logs/ray_job_submit.out'"
|
||||
echo "${SUBMISSION_ID}" | dexec "${HEAD_CONTAINER}" bash -lc "cat > '${JOB_DIR}/config/ray_submission_id.txt'"
|
||||
|
||||
echo "[head] debug snapshot (post-submit)"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray job list >'${JOB_DIR}/debug/ray_job_list_post.txt' 2>&1 || true"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray status >'${JOB_DIR}/debug/ray_status_post.txt' 2>&1 || true"
|
||||
|
||||
echo "submitted: ${SUBMISSION_ID}"
|
||||
echo "job dir: ${JOB_DIR}"
|
||||
62
src/mvp/v1.1/scripts/42_submit_sft_minimal.sh
Normal file
62
src/mvp/v1.1/scripts/42_submit_sft_minimal.sh
Normal file
@ -0,0 +1,62 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
SUBMISSION_ID="${SUBMISSION_ID:-mvp11_sft_$(timestamp)_$RANDOM}"
|
||||
JOB_DIR="${SHARED_ROOT}/jobs/${SUBMISSION_ID}"
|
||||
|
||||
MODEL_ID="${MODEL_ID:-Qwen/Qwen2.5-0.5B-Instruct}"
|
||||
TRAIN_FILE="${SHARED_ROOT}/datasets/gsm8k_sft/train.parquet"
|
||||
VAL_FILE="${SHARED_ROOT}/datasets/gsm8k_sft/test.parquet"
|
||||
|
||||
CODE_PATH="${CODE_PATH:-${SHARED_ROOT}/common/code/verl/verl_repo}"
|
||||
TOTAL_TRAINING_STEPS="${TOTAL_TRAINING_STEPS:-10}"
|
||||
SAVE_FREQ="${SAVE_FREQ:-10}"
|
||||
SFT_DRIVER_DEVICE="${SFT_DRIVER_DEVICE:-cpu}"
|
||||
|
||||
echo "[head] create job dir: ${JOB_DIR}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "mkdir -p '${JOB_DIR}'/{logs,checkpoints,config,debug}"
|
||||
|
||||
SUBMIT_CMD="python3 -m verl.trainer.sft_trainer_ray \
|
||||
model.path=${MODEL_ID} \
|
||||
data.train_files=${TRAIN_FILE} \
|
||||
data.val_files=null \
|
||||
data.train_batch_size=64 \
|
||||
data.micro_batch_size_per_gpu=1 \
|
||||
data.max_token_len_per_gpu=2048 \
|
||||
data.max_length=1024 \
|
||||
trainer.logger=console \
|
||||
trainer.project_name=mvp11-sft \
|
||||
trainer.experiment_name=${SUBMISSION_ID} \
|
||||
trainer.total_epochs=1 \
|
||||
trainer.total_training_steps=${TOTAL_TRAINING_STEPS} \
|
||||
trainer.save_freq=${SAVE_FREQ} \
|
||||
trainer.test_freq=-1 \
|
||||
trainer.resume_mode=disable \
|
||||
trainer.device=${SFT_DRIVER_DEVICE} \
|
||||
trainer.default_local_dir=${JOB_DIR}/checkpoints \
|
||||
trainer.nnodes=2 \
|
||||
trainer.n_gpus_per_node=4 \
|
||||
hydra.run.dir=${JOB_DIR}/logs/hydra"
|
||||
|
||||
printf "%s\n" "${SUBMIT_CMD}" | dexec "${HEAD_CONTAINER}" bash -lc "cat > '${JOB_DIR}/config/submit_cmd.txt'"
|
||||
|
||||
echo "[head] debug snapshot (pre-submit)"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray status >'${JOB_DIR}/debug/ray_status_pre.txt' 2>&1 || true"
|
||||
|
||||
echo "[head] submit SFT via ray job submit (driver forced on worker)"
|
||||
SUBMIT_OUT="$(dexec "${HEAD_CONTAINER}" bash -lc "ray job submit --address='${RAY_DASHBOARD_ADDR}' --submission-id='${SUBMISSION_ID}' --entrypoint-num-cpus=1 --entrypoint-resources='{\"worker_node\": 1}' --runtime-env-json='{\"env_vars\":{\"HF_HOME\":\"${SHARED_ROOT}/hf\",\"HUGGINGFACE_HUB_CACHE\":\"${SHARED_ROOT}/hf/hub\",\"TRANSFORMERS_CACHE\":\"${SHARED_ROOT}/hf/transformers\",\"HF_ENDPOINT\":\"https://hf-mirror.com\",\"PYTHONUNBUFFERED\":\"1\",\"RAY_ADDRESS\":\"auto\",\"PYTHONPATH\":\"${CODE_PATH}:${SHARED_ROOT}/user/code\"}}' --no-wait -- ${SUBMIT_CMD}")"
|
||||
|
||||
printf "%s\n" "${SUBMIT_OUT}"
|
||||
printf "%s\n" "${SUBMIT_OUT}" | dexec "${HEAD_CONTAINER}" bash -lc "cat > '${JOB_DIR}/logs/ray_job_submit.out'"
|
||||
echo "${SUBMISSION_ID}" | dexec "${HEAD_CONTAINER}" bash -lc "cat > '${JOB_DIR}/config/ray_submission_id.txt'"
|
||||
|
||||
echo "[head] debug snapshot (post-submit)"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray job list >'${JOB_DIR}/debug/ray_job_list_post.txt' 2>&1 || true"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray status >'${JOB_DIR}/debug/ray_status_post.txt' 2>&1 || true"
|
||||
|
||||
echo "submitted: ${SUBMISSION_ID}"
|
||||
echo "job dir: ${JOB_DIR}"
|
||||
17
src/mvp/v1.1/scripts/43_submit_jobspec.sh
Normal file
17
src/mvp/v1.1/scripts/43_submit_jobspec.sh
Normal file
@ -0,0 +1,17 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
SPEC_PATH="${1:-}"
|
||||
if [[ -z "${SPEC_PATH}" ]]; then
|
||||
echo "usage: $0 <spec_path_inside_container>" >&2
|
||||
echo "example: $0 /workspace/mvp/v1.1/templates/ppo.json" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Submit from head container (required), but with driver forced onto worker via entrypoint resources in spec.
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "SHARED_ROOT='${SHARED_ROOT}' python3 /workspace/mvp/v1.1/submit_job.py --spec '${SPEC_PATH}' --no-wait"
|
||||
|
||||
19
src/mvp/v1.1/scripts/44_submit_sdk.sh
Normal file
19
src/mvp/v1.1/scripts/44_submit_sdk.sh
Normal file
@ -0,0 +1,19 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
CONFIG_PATH="${1:-/workspace/mvp/v1.1/py/configs/dev.yaml}"
|
||||
JOBSPEC_PATH="${2:-}"
|
||||
|
||||
if [[ -z "${JOBSPEC_PATH}" ]]; then
|
||||
echo "usage: $0 <ray_config_yaml_in_container> <jobspec_yaml_in_container>" >&2
|
||||
echo "example: $0 /workspace/mvp/v1.1/py/configs/dev.yaml /workspace/mvp/v1.1/py/jobspecs/ppo.yaml" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "[head] submit via Ray Python SDK"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "python3 /workspace/mvp/v1.1/py/run.py --config '${CONFIG_PATH}' --jobspec '${JOBSPEC_PATH}' --action submit --no-wait"
|
||||
|
||||
86
src/mvp/v1.1/scripts/46_submit_ppo_two_verl_tags.sh
Normal file
86
src/mvp/v1.1/scripts/46_submit_ppo_two_verl_tags.sh
Normal file
@ -0,0 +1,86 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
CONFIG_PATH="${1:-/workspace/mvp/v1.1/py/configs/dev.yaml}"
|
||||
|
||||
TS="$(timestamp)"
|
||||
BASE="/workspace/mvp/v1.1/py/jobspecs"
|
||||
|
||||
NNODES="${NNODES:-1}"
|
||||
N_GPUS_PER_NODE="${N_GPUS_PER_NODE:-1}"
|
||||
|
||||
wait_job() {
|
||||
local sid="$1"
|
||||
echo "[head] wait: ${sid}"
|
||||
while true; do
|
||||
# Ray returns one of: PENDING/RUNNING/SUCCEEDED/FAILED/STOPPED
|
||||
st="$(dexec "${HEAD_CONTAINER}" bash -lc "python3 /workspace/mvp/v1.1/py/run.py --config '${CONFIG_PATH}' --action status --submission-id '${sid}'" | tr -d '\r' | tail -n 1)"
|
||||
echo "[head] status: ${sid} -> ${st}"
|
||||
case "${st}" in
|
||||
*SUCCEEDED*)
|
||||
return 0
|
||||
;;
|
||||
*FAILED*|*STOPPED*)
|
||||
echo "[head] job not successful: ${sid} (${st})" >&2
|
||||
echo "[head] last logs:"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "python3 /workspace/mvp/v1.1/py/run.py --config '${CONFIG_PATH}' --action logs --submission-id '${sid}' --tail 200" || true
|
||||
return 1
|
||||
;;
|
||||
*)
|
||||
sleep 10
|
||||
;;
|
||||
esac
|
||||
done
|
||||
}
|
||||
|
||||
show_precheck() {
|
||||
local sid="$1"
|
||||
echo "[head] verify precheck: ${sid}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "python3 /workspace/mvp/v1.1/py/run.py --config '${CONFIG_PATH}' --action logs --submission-id '${sid}' --tail 2000 | egrep 'MVP_PRECHECK_VERL_FILE|MVP_PRECHECK_MARKER' || true"
|
||||
}
|
||||
|
||||
make_spec() {
|
||||
local tag="$1"
|
||||
local code_path="$2"
|
||||
local out_path="$3"
|
||||
local sid="mvp11_ppo_${tag//./_}_${TS}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "cat > '${out_path}' <<'YAML'
|
||||
workload: \"ppo\"
|
||||
submission_id: \"${sid}\"
|
||||
code_path: \"${code_path}\"
|
||||
model_id: \"Qwen/Qwen2.5-0.5B-Instruct\"
|
||||
train_file: \"/private/datasets/gsm8k/train.parquet\"
|
||||
val_file: \"/private/datasets/gsm8k/test.parquet\"
|
||||
nnodes: ${NNODES}
|
||||
n_gpus_per_node: ${N_GPUS_PER_NODE}
|
||||
total_epochs: 1
|
||||
total_training_steps: 10
|
||||
save_freq: 10
|
||||
test_freq: -1
|
||||
YAML"
|
||||
echo "${sid}"
|
||||
}
|
||||
|
||||
echo "[head] submit PPO sequentially with verl v0.6.0 then v0.6.1"
|
||||
echo "[head] resources: nnodes=${NNODES} n_gpus_per_node=${N_GPUS_PER_NODE}"
|
||||
|
||||
sid0="$(make_spec "v0.6.0" "/private/common/code/verl/verl_v0.6.0" "${BASE}/tmp_ppo_verl_v0.6.0_${TS}.yaml")"
|
||||
echo "[head] submit: ${sid0}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "python3 /workspace/mvp/v1.1/py/run.py --config '${CONFIG_PATH}' --jobspec '${BASE}/tmp_ppo_verl_v0.6.0_${TS}.yaml' --action submit --no-wait"
|
||||
wait_job "${sid0}"
|
||||
show_precheck "${sid0}"
|
||||
|
||||
sid1="$(make_spec "v0.6.1" "/private/common/code/verl/verl_v0.6.1" "${BASE}/tmp_ppo_verl_v0.6.1_${TS}.yaml")"
|
||||
echo "[head] submit: ${sid1}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "python3 /workspace/mvp/v1.1/py/run.py --config '${CONFIG_PATH}' --jobspec '${BASE}/tmp_ppo_verl_v0.6.1_${TS}.yaml' --action submit --no-wait"
|
||||
wait_job "${sid1}"
|
||||
show_precheck "${sid1}"
|
||||
|
||||
echo "[head] done"
|
||||
echo "submitted:"
|
||||
echo " ${sid0} (verl v0.6.0)"
|
||||
echo " ${sid1} (verl v0.6.1)"
|
||||
13
src/mvp/v1.1/scripts/50_status.sh
Normal file
13
src/mvp/v1.1/scripts/50_status.sh
Normal file
@ -0,0 +1,13 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
echo "[head] ray status"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray status || true"
|
||||
|
||||
echo "[head] ray job list"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "ray job list || true"
|
||||
|
||||
52
src/mvp/v1.1/scripts/lib.sh
Normal file
52
src/mvp/v1.1/scripts/lib.sh
Normal file
@ -0,0 +1,52 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
ROOT_DIR="$(cd "${SCRIPT_DIR}/.." && pwd)"
|
||||
|
||||
COMPOSE_FILE="${ROOT_DIR}/docker-compose.yaml"
|
||||
|
||||
HEAD_CONTAINER="mvp11-ray-head"
|
||||
WORKER0_CONTAINER="mvp11-ray-worker-0"
|
||||
WORKER1_CONTAINER="mvp11-ray-worker-1"
|
||||
|
||||
SHARED_ROOT="${SHARED_ROOT:-/private}"
|
||||
RAY_DASHBOARD_ADDR="${RAY_DASHBOARD_ADDR:-http://127.0.0.1:8265}"
|
||||
|
||||
dc() {
|
||||
docker compose --project-directory "${ROOT_DIR}" -f "${COMPOSE_FILE}" "$@"
|
||||
}
|
||||
|
||||
require_cmd() {
|
||||
local cmd="$1"
|
||||
command -v "${cmd}" >/dev/null 2>&1 || {
|
||||
echo "missing required command: ${cmd}" >&2
|
||||
exit 1
|
||||
}
|
||||
}
|
||||
|
||||
ensure_container_running() {
|
||||
local name="$1"
|
||||
if ! docker ps --format '{{.Names}}' | grep -qx "${name}"; then
|
||||
echo "container not running: ${name}" >&2
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
dexec() {
|
||||
local name="$1"
|
||||
shift
|
||||
ensure_container_running "${name}"
|
||||
docker exec -i "${name}" "$@"
|
||||
}
|
||||
|
||||
container_ip() {
|
||||
local name="$1"
|
||||
ensure_container_running "${name}"
|
||||
docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' "${name}"
|
||||
}
|
||||
|
||||
timestamp() {
|
||||
date +"%Y%m%d_%H%M%S"
|
||||
}
|
||||
|
||||
15
src/mvp/v1.1/scripts/run_all.sh
Normal file
15
src/mvp/v1.1/scripts/run_all.sh
Normal file
@ -0,0 +1,15 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
|
||||
"${SCRIPT_DIR}/00_prereq_check.sh"
|
||||
"${SCRIPT_DIR}/01_up.sh"
|
||||
"${SCRIPT_DIR}/20_start_head.sh"
|
||||
"${SCRIPT_DIR}/21_start_workers.sh"
|
||||
"${SCRIPT_DIR}/30_prepare_data_and_model.sh"
|
||||
"${SCRIPT_DIR}/40_submit_ppo_epoch1.sh"
|
||||
"${SCRIPT_DIR}/41_submit_grpo_epoch1.sh"
|
||||
"${SCRIPT_DIR}/42_submit_sft_minimal.sh"
|
||||
"${SCRIPT_DIR}/50_status.sh"
|
||||
|
||||
282
src/mvp/v1.1/submit_job.py
Normal file
282
src/mvp/v1.1/submit_job.py
Normal file
@ -0,0 +1,282 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import shlex
|
||||
import subprocess
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def _ts():
|
||||
return datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
|
||||
|
||||
def _expand(value: str) -> str:
|
||||
return os.path.expandvars(value)
|
||||
|
||||
|
||||
def _mkdir(path: Path) -> None:
|
||||
path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
def _write_text(path: Path, content: str) -> None:
|
||||
_mkdir(path.parent)
|
||||
path.write_text(content, encoding="utf-8")
|
||||
|
||||
|
||||
def _write_json(path: Path, obj) -> None:
|
||||
_mkdir(path.parent)
|
||||
path.write_text(json.dumps(obj, indent=2, ensure_ascii=False) + "\n", encoding="utf-8")
|
||||
|
||||
|
||||
def _require(spec: dict, key: str):
|
||||
if key not in spec:
|
||||
raise SystemExit(f"missing required key in spec: {key}")
|
||||
return spec[key]
|
||||
|
||||
|
||||
def _default_submission_id(workload: str) -> str:
|
||||
return f"mvp11_{workload}_{_ts()}_{os.getpid()}"
|
||||
|
||||
|
||||
def _runtime_env(spec: dict) -> dict:
|
||||
shared_root = _expand(_require(spec, "shared_root"))
|
||||
code_path = _expand(_require(spec, "code_path"))
|
||||
env_vars = dict(spec.get("runtime_env", {}).get("env_vars", {}))
|
||||
|
||||
env_vars.setdefault("HF_HOME", f"{shared_root}/hf")
|
||||
env_vars.setdefault("HUGGINGFACE_HUB_CACHE", f"{shared_root}/hf/hub")
|
||||
env_vars.setdefault("TRANSFORMERS_CACHE", f"{shared_root}/hf/transformers")
|
||||
env_vars.setdefault("PYTHONUNBUFFERED", "1")
|
||||
|
||||
user_code = f"{shared_root}/user/code"
|
||||
existing = env_vars.get("PYTHONPATH", "")
|
||||
prefix = f"{code_path}:{user_code}"
|
||||
env_vars["PYTHONPATH"] = f"{prefix}:{existing}" if existing else prefix
|
||||
|
||||
# Helpful marker for logs/debugging
|
||||
env_vars.setdefault("MVP_CODE_PATH", code_path)
|
||||
|
||||
return {"env_vars": env_vars}
|
||||
|
||||
|
||||
def _preflight_shell() -> str:
|
||||
# Make multi-version/debugging observable in Ray job logs.
|
||||
# `mvp_marker.py` is written by our snapshot script (optional); if missing, ignore.
|
||||
py = r"""
|
||||
import os
|
||||
import sys
|
||||
print("MVP_PRECHECK_PYTHON:", sys.executable)
|
||||
print("MVP_PRECHECK_PYTHONPATH:", os.environ.get("PYTHONPATH"))
|
||||
try:
|
||||
import verl
|
||||
print("MVP_PRECHECK_VERL_FILE:", getattr(verl, "__file__", None))
|
||||
except Exception as e:
|
||||
print("MVP_PRECHECK_VERL_IMPORT_ERROR:", repr(e))
|
||||
try:
|
||||
import mvp_marker
|
||||
print("MVP_PRECHECK_MARKER:", getattr(mvp_marker, "MARKER", None))
|
||||
except Exception as e:
|
||||
print("MVP_PRECHECK_MARKER_MISSING:", repr(e))
|
||||
"""
|
||||
return f"python3 - <<'PY'\n{py.strip()}\nPY"
|
||||
|
||||
|
||||
def _build_entrypoint(spec: dict, submission_id: str, job_dir: str) -> str:
|
||||
workload = _require(spec, "workload")
|
||||
model_id = _expand(_require(spec, "model_id"))
|
||||
shared_root = _expand(_require(spec, "shared_root"))
|
||||
|
||||
if workload in ("ppo", "grpo"):
|
||||
cfg = spec.get(workload, {})
|
||||
train_file = _expand(cfg.get("train_file", f"{shared_root}/datasets/gsm8k/train.parquet"))
|
||||
val_file = _expand(cfg.get("val_file", f"{shared_root}/datasets/gsm8k/test.parquet"))
|
||||
nnodes = int(cfg.get("nnodes", 2))
|
||||
gpus_per_node = int(cfg.get("n_gpus_per_node", 4))
|
||||
total_epochs = int(cfg.get("total_epochs", 1))
|
||||
total_steps = int(cfg.get("total_training_steps", 10))
|
||||
save_freq = int(cfg.get("save_freq", 10))
|
||||
test_freq = int(cfg.get("test_freq", -1))
|
||||
|
||||
algo_overrides = ""
|
||||
if workload == "grpo":
|
||||
algo_overrides = "algorithm.adv_estimator=grpo"
|
||||
|
||||
cmd = f"""python3 -m verl.trainer.main_ppo \
|
||||
data.train_files={train_file} \
|
||||
data.val_files={val_file} \
|
||||
data.train_batch_size=256 \
|
||||
data.max_prompt_length=512 \
|
||||
data.max_response_length=512 \
|
||||
actor_rollout_ref.model.path={model_id} \
|
||||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||||
actor_rollout_ref.actor.ppo_mini_batch_size=64 \
|
||||
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \
|
||||
actor_rollout_ref.rollout.name=sglang \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
|
||||
actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \
|
||||
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \
|
||||
critic.optim.lr=1e-5 \
|
||||
critic.model.path={model_id} \
|
||||
critic.ppo_micro_batch_size_per_gpu=4 \
|
||||
algorithm.kl_ctrl.kl_coef=0.001 \
|
||||
{algo_overrides} \
|
||||
trainer.logger=console \
|
||||
trainer.val_before_train=False \
|
||||
trainer.n_gpus_per_node={gpus_per_node} \
|
||||
trainer.nnodes={nnodes} \
|
||||
trainer.save_freq={save_freq} \
|
||||
trainer.test_freq={test_freq} \
|
||||
trainer.total_epochs={total_epochs} \
|
||||
trainer.total_training_steps={total_steps} \
|
||||
trainer.resume_mode=disable \
|
||||
trainer.default_local_dir={job_dir}/checkpoints \
|
||||
+ray_kwargs.ray_init.address=auto \
|
||||
hydra.run.dir={job_dir}/logs/hydra"""
|
||||
return "\n".join([_preflight_shell(), "exec " + cmd])
|
||||
|
||||
if workload == "sft":
|
||||
cfg = spec.get("sft", {})
|
||||
train_file = _expand(cfg.get("train_file", f"{shared_root}/datasets/gsm8k_sft/train.parquet"))
|
||||
val_file = cfg.get("val_file", None)
|
||||
nnodes = int(cfg.get("nnodes", 2))
|
||||
gpus_per_node = int(cfg.get("n_gpus_per_node", 4))
|
||||
total_epochs = int(cfg.get("total_epochs", 1))
|
||||
total_steps = int(cfg.get("total_training_steps", 10))
|
||||
save_freq = int(cfg.get("save_freq", 10))
|
||||
device = cfg.get("device", "cpu")
|
||||
|
||||
val_override = "data.val_files=null" if val_file is None else f"data.val_files={_expand(val_file)}"
|
||||
|
||||
# Note: driver should not require CUDA under ray job submit (no entrypoint GPUs by default).
|
||||
cmd = f"""python3 -m verl.trainer.sft_trainer_ray \
|
||||
model.path={model_id} \
|
||||
data.train_files={train_file} \
|
||||
{val_override} \
|
||||
data.train_batch_size=64 \
|
||||
data.micro_batch_size_per_gpu=1 \
|
||||
data.max_token_len_per_gpu=2048 \
|
||||
data.max_length=1024 \
|
||||
trainer.logger=console \
|
||||
trainer.project_name=mvp11-sft \
|
||||
trainer.experiment_name={submission_id} \
|
||||
trainer.total_epochs={total_epochs} \
|
||||
trainer.total_training_steps={total_steps} \
|
||||
trainer.save_freq={save_freq} \
|
||||
trainer.test_freq=-1 \
|
||||
trainer.resume_mode=disable \
|
||||
trainer.device={device} \
|
||||
trainer.default_local_dir={job_dir}/checkpoints \
|
||||
trainer.nnodes={nnodes} \
|
||||
trainer.n_gpus_per_node={gpus_per_node} \
|
||||
hydra.run.dir={job_dir}/logs/hydra"""
|
||||
return "\n".join([_preflight_shell(), "exec " + cmd])
|
||||
|
||||
raise SystemExit(f"unsupported workload: {workload}")
|
||||
|
||||
|
||||
def main() -> int:
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--spec", required=True, help="Path to JobSpec json (inside this container)")
|
||||
parser.add_argument("--no-wait", action="store_true", help="Submit and return immediately")
|
||||
parser.add_argument("--dry-run", action="store_true", help="Only print the submit command")
|
||||
args = parser.parse_args()
|
||||
|
||||
spec_path = Path(args.spec)
|
||||
spec = json.loads(spec_path.read_text(encoding="utf-8"))
|
||||
|
||||
shared_root = _expand(_require(spec, "shared_root"))
|
||||
workload = _require(spec, "workload")
|
||||
|
||||
submission_id = spec.get("submission_id") or _default_submission_id(workload)
|
||||
job_dir = f"{shared_root}/jobs/{submission_id}"
|
||||
|
||||
ray_cfg = _require(spec, "ray")
|
||||
ray_addr = ray_cfg.get("address", "http://127.0.0.1:8265")
|
||||
entrypoint_num_cpus = ray_cfg.get("entrypoint_num_cpus", 1)
|
||||
entrypoint_resources = ray_cfg.get("entrypoint_resources", {"worker_node": 1})
|
||||
|
||||
runtime_env = _runtime_env(spec)
|
||||
entrypoint = _build_entrypoint(spec, submission_id=submission_id, job_dir=job_dir)
|
||||
|
||||
# Prepare job dir
|
||||
job_root = Path(job_dir)
|
||||
_mkdir(job_root / "config")
|
||||
_mkdir(job_root / "logs")
|
||||
_mkdir(job_root / "checkpoints")
|
||||
_mkdir(job_root / "debug")
|
||||
|
||||
# Snapshot config for audit/debug
|
||||
_write_json(job_root / "config" / "job_spec.json", spec)
|
||||
_write_json(job_root / "config" / "runtime_env.json", runtime_env)
|
||||
_write_text(job_root / "config" / "ray_submission_id.txt", submission_id + "\n")
|
||||
|
||||
submit_cmd_txt = "\n".join(
|
||||
[
|
||||
"ray job submit",
|
||||
f" --address={ray_addr}",
|
||||
f" --submission-id={submission_id}",
|
||||
f" --entrypoint-num-cpus={entrypoint_num_cpus}",
|
||||
f" --entrypoint-resources={json.dumps(entrypoint_resources)}",
|
||||
f" --runtime-env-json=<see runtime_env.json>",
|
||||
f" {'--no-wait' if args.no_wait else ''}",
|
||||
" -- bash -lc '<entrypoint>'",
|
||||
]
|
||||
)
|
||||
_write_text(job_root / "config" / "submit_cmd.txt", submit_cmd_txt + "\n")
|
||||
|
||||
# Debug snapshot (pre-submit)
|
||||
try:
|
||||
pre = subprocess.run(["ray", "status"], capture_output=True, text=True, check=False)
|
||||
_write_text(job_root / "debug" / "ray_status_pre.txt", (pre.stdout or "") + (pre.stderr or ""))
|
||||
except FileNotFoundError:
|
||||
_write_text(job_root / "debug" / "ray_status_pre.txt", "ray cli not found\n")
|
||||
|
||||
submit_args = [
|
||||
"ray",
|
||||
"job",
|
||||
"submit",
|
||||
"--address",
|
||||
ray_addr,
|
||||
"--submission-id",
|
||||
submission_id,
|
||||
"--entrypoint-num-cpus",
|
||||
str(entrypoint_num_cpus),
|
||||
"--entrypoint-resources",
|
||||
json.dumps(entrypoint_resources),
|
||||
"--runtime-env-json",
|
||||
json.dumps(runtime_env),
|
||||
]
|
||||
if args.no_wait:
|
||||
submit_args.append("--no-wait")
|
||||
submit_args += ["--", "bash", "-lc", entrypoint]
|
||||
|
||||
if args.dry_run:
|
||||
print(" ".join(shlex.quote(x) for x in submit_args))
|
||||
return 0
|
||||
|
||||
proc = subprocess.run(submit_args, capture_output=True, text=True, check=False)
|
||||
_write_text(job_root / "logs" / "ray_job_submit.out", (proc.stdout or "") + (proc.stderr or ""))
|
||||
print(proc.stdout, end="")
|
||||
if proc.returncode != 0:
|
||||
print(proc.stderr, end="", file=os.sys.stderr)
|
||||
return proc.returncode
|
||||
|
||||
# Debug snapshot (post-submit)
|
||||
try:
|
||||
post = subprocess.run(["ray", "job", "list", "--log-style=record", "-v"], capture_output=True, text=True, check=False)
|
||||
_write_text(job_root / "debug" / "ray_job_list_post.txt", (post.stdout or "") + (post.stderr or ""))
|
||||
post2 = subprocess.run(["ray", "status"], capture_output=True, text=True, check=False)
|
||||
_write_text(job_root / "debug" / "ray_status_post.txt", (post2.stdout or "") + (post2.stderr or ""))
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
print(f"job_dir: {job_dir}")
|
||||
return 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
raise SystemExit(main())
|
||||
|
||||
31
src/mvp/v1.1/templates/grpo.json
Normal file
31
src/mvp/v1.1/templates/grpo.json
Normal file
@ -0,0 +1,31 @@
|
||||
{
|
||||
"submission_id": "",
|
||||
"workload": "grpo",
|
||||
"shared_root": "${SHARED_ROOT}",
|
||||
"code_path": "${SHARED_ROOT}/common/code/verl/verl_repo",
|
||||
"model_id": "Qwen/Qwen2.5-0.5B-Instruct",
|
||||
"grpo": {
|
||||
"train_file": "${SHARED_ROOT}/datasets/gsm8k/train.parquet",
|
||||
"val_file": "${SHARED_ROOT}/datasets/gsm8k/test.parquet",
|
||||
"nnodes": 2,
|
||||
"n_gpus_per_node": 4,
|
||||
"total_epochs": 1,
|
||||
"total_training_steps": 10,
|
||||
"save_freq": 10,
|
||||
"test_freq": -1
|
||||
},
|
||||
"ray": {
|
||||
"address": "http://127.0.0.1:8265",
|
||||
"entrypoint_num_cpus": 1,
|
||||
"entrypoint_resources": {
|
||||
"worker_node": 1
|
||||
}
|
||||
},
|
||||
"runtime_env": {
|
||||
"env_vars": {
|
||||
"HF_ENDPOINT": "https://hf-mirror.com",
|
||||
"PYTHONUNBUFFERED": "1"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
31
src/mvp/v1.1/templates/ppo.json
Normal file
31
src/mvp/v1.1/templates/ppo.json
Normal file
@ -0,0 +1,31 @@
|
||||
{
|
||||
"submission_id": "",
|
||||
"workload": "ppo",
|
||||
"shared_root": "${SHARED_ROOT}",
|
||||
"code_path": "${SHARED_ROOT}/common/code/verl/verl_repo",
|
||||
"model_id": "Qwen/Qwen2.5-0.5B-Instruct",
|
||||
"ppo": {
|
||||
"train_file": "${SHARED_ROOT}/datasets/gsm8k/train.parquet",
|
||||
"val_file": "${SHARED_ROOT}/datasets/gsm8k/test.parquet",
|
||||
"nnodes": 2,
|
||||
"n_gpus_per_node": 4,
|
||||
"total_epochs": 1,
|
||||
"total_training_steps": 10,
|
||||
"save_freq": 10,
|
||||
"test_freq": -1
|
||||
},
|
||||
"ray": {
|
||||
"address": "http://127.0.0.1:8265",
|
||||
"entrypoint_num_cpus": 1,
|
||||
"entrypoint_resources": {
|
||||
"worker_node": 1
|
||||
}
|
||||
},
|
||||
"runtime_env": {
|
||||
"env_vars": {
|
||||
"HF_ENDPOINT": "https://hf-mirror.com",
|
||||
"PYTHONUNBUFFERED": "1"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
32
src/mvp/v1.1/templates/sft.json
Normal file
32
src/mvp/v1.1/templates/sft.json
Normal file
@ -0,0 +1,32 @@
|
||||
{
|
||||
"submission_id": "",
|
||||
"workload": "sft",
|
||||
"shared_root": "${SHARED_ROOT}",
|
||||
"code_path": "${SHARED_ROOT}/common/code/verl/verl_repo",
|
||||
"model_id": "Qwen/Qwen2.5-0.5B-Instruct",
|
||||
"sft": {
|
||||
"train_file": "${SHARED_ROOT}/datasets/gsm8k_sft/train.parquet",
|
||||
"val_file": null,
|
||||
"nnodes": 2,
|
||||
"n_gpus_per_node": 4,
|
||||
"total_epochs": 1,
|
||||
"total_training_steps": 10,
|
||||
"save_freq": 10,
|
||||
"device": "cpu"
|
||||
},
|
||||
"ray": {
|
||||
"address": "http://127.0.0.1:8265",
|
||||
"entrypoint_num_cpus": 1,
|
||||
"entrypoint_resources": {
|
||||
"worker_node": 1
|
||||
}
|
||||
},
|
||||
"runtime_env": {
|
||||
"env_vars": {
|
||||
"HF_ENDPOINT": "https://hf-mirror.com",
|
||||
"PYTHONUNBUFFERED": "1",
|
||||
"RAY_ADDRESS": "auto"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
1877
src/mvp/v1/arch.excalidraw
Normal file
1877
src/mvp/v1/arch.excalidraw
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user