mvp 2.0 验收通过,实现基本API提交,查询,取消任务,并且有简单的FIFO排队

This commit is contained in:
yuyr 2025-12-23 17:17:36 +08:00
parent 2a1168c43c
commit 64558c8cea
25 changed files with 1957 additions and 0 deletions

194
specs/mvp/v2.0/v2_api.md Normal file
View File

@ -0,0 +1,194 @@
# MVP v2.0 API 设计(最小可用)
v2.0 的 API 目标是:把 v1.1 的“脚本提交”变成“服务化提交”,并在服务侧实现队列/重试/状态聚合。
约束:
- 内部 token 鉴权(简单即可)。
- Ray Job 提交必须使用 **Ray Python SDK**`JobSubmissionClient`),不使用 `requests` 手写 HTTP。
- 输出与状态必须落盘到 NFS容器内 `/private`)。
---
## 1. 鉴权
- Header`Authorization: Bearer <INTERNAL_TOKEN>`
- v2.0 不做用户体系与权限隔离token 只是“防误用”。
- 配置建议:复用 `src/mvp/v1.1/py/configs/dev.yaml` 并在 `v2.auth.token_env` 指定 token 环境变量名。
## 1.1 运行位置dev 示例)
- 服务进程运行在 **Ray head 容器**(便于访问 Ray Job server
- 宿主机侧用脚本控制(`docker exec`
- `src/mvp/v2.0/scripts/20_start_api.sh`
- `src/mvp/v2.0/scripts/21_stop_api.sh`
- `src/mvp/v2.0/scripts/22_status_api.sh`
- 远程机目录约定(示例):`argus@h1:/home2/argus/infra/mvp/v2/`,容器内挂载到 `/workspace/mvp/v2/`
---
## 2. 资源与 ID 约定
### 2.1 task_id服务层主 ID
- 格式建议:`mvp2-<workload>-<YYYYMMDD>-<HHMMSS>-<suffix>`
- 示例:`mvp2-ppo-20251223-143201-7f3a`
### 2.2 ray_submission_idattempt 级 ID
- 由 service 派生:`<task_id>--a<NN>`
- 示例:`mvp2-ppo-20251223-143201-7f3a--a01`
好处:
- Ray 的 submission id 自带 task_id可直接从 Ray dashboard 反查到服务侧任务。
- `/private/jobs/<ray_submission_id>/...` 目录天然隔离且可读。
---
## 3. JobSpec请求体
v2.0 **要求 JobSpec 使用 v1.1 同款 YAML**(字段与语义保持一致),服务端接收 YAML 文本并解析后入库(同时原样保存 `jobspec_yaml` 便于审计/复现)。
最小字段(示例 YAML
```yaml
workload: "ppo"
submission_id: "" # v2.0 服务端会忽略/覆盖(由 task_id 派生 ray_submission_id
code_path: "/private/common/code/verl/verl_repo"
model_id: "Qwen/Qwen2.5-0.5B-Instruct"
train_file: "/private/datasets/gsm8k/train.parquet"
val_file: "/private/datasets/gsm8k/test.parquet"
nnodes: 2
n_gpus_per_node: 4
total_epochs: 1
total_training_steps: 10
save_freq: 10
test_freq: -1
trainer_device: null # 仅 sft 使用(通常 "cpu"
```
说明:
- `trainer_device` 仅对 `sft` 生效(通常为 `cpu`,避免 driver 无 GPU
- `val_file` 可为 `null`(例如 SFT
---
## 4. API 端点
### 4.1 提交任务
`POST /api/v2/tasks`
Request body
- **raw JobSpec YAML**(与 v1.1 jobspec YAML 结构一致)
Headers
- `Content-Type: application/yaml`(或 `text/yaml`
Response
```json
{
"task_id": "mvp2-ppo-20251223-143201-7f3a",
"state": "QUEUED"
}
```
### 4.2 查询任务(聚合状态)
`GET /api/v2/tasks/{task_id}`
Response示例
```json
{
"task_id": "mvp2-ppo-20251223-143201-7f3a",
"workload": "ppo",
"state": "RUNNING",
"desired_resources": {"nnodes": 2, "n_gpus_per_node": 4, "total_gpus": 8},
"latest_attempt": {
"attempt_no": 1,
"ray_submission_id": "mvp2-ppo-20251223-143201-7f3a--a01",
"ray_status": "RUNNING",
"start_time": "2025-12-23T14:32:10+08:00"
},
"error_summary": null
}
```
### 4.3 列出 attempts
`GET /api/v2/tasks/{task_id}/attempts`
Response
```json
{
"task_id": "mvp2-ppo-20251223-143201-7f3a",
"attempts": [
{
"attempt_no": 1,
"ray_submission_id": "mvp2-ppo-20251223-143201-7f3a--a01",
"ray_status": "FAILED",
"failure_kind": "INSUFFICIENT_RESOURCES",
"message": "Total available GPUs 0 is less than total desired GPUs 8",
"start_time": "...",
"end_time": "..."
}
]
}
```
### 4.4 取消任务
`POST /api/v2/tasks/{task_id}:cancel`
行为:
- 若 task 处于 `SUBMITTED/RUNNING`:调用 Ray Jobs SDK `stop_job(ray_submission_id)` 并标记 `CANCELED`
- 若处于 `QUEUED/PENDING_RESOURCES`:直接标记 `CANCELED`(不提交)
Response
```json
{"task_id":"...","state":"CANCELED"}
```
### 4.5 获取日志
`GET /api/v2/tasks/{task_id}/logs?attempt=latest&tail=2000`
返回:
- `text/plain`(直接透传 Ray Job logs tail
说明:
- v2.0 先用 Ray SDK `get_job_logs()`
- 若需要更稳定的归档,可在 scheduler 定期抓取并落盘v2.1+)。
### 4.6 列出队列(运维/调试)
`GET /api/v2/queue`
Response
```json
{
"pending": [{"task_id":"...","state":"PENDING_RESOURCES","next_run_at":"..."}],
"running": [{"task_id":"...","ray_submission_id":"..."}]
}
```
---
## 5. 错误码(最小)
- `400`jobspec 缺字段/非法
- `401`token 不正确
- `404`task 不存在
- `409`:状态冲突(例如已终态又 cancel
- `500`:服务内部错误
---
## 6. SQLite 持久化API 可见性)
v2.0 服务端使用 SQLite 持久化保存:
- tasks`task_id``state``jobspec_yaml``next_run_at``latest_attempt_no` 等)
- attempts`ray_submission_id``ray_status`、失败原因等)
因此:
- `GET /api/v2/tasks/{task_id}` 的数据来自 SQLite再叠加 Ray 状态同步的结果)。
- 进程重启后,队列可恢复,`PENDING_RESOURCES` 的任务会在 `next_run_at` 到期后继续尝试提交。

306
specs/mvp/v2.0/v2_plan.md Normal file
View File

@ -0,0 +1,306 @@
# MVP v2.0 开发计划(服务化入口 + 队列调度 + Ray Jobs SDK
目标:在 v1.1(脚本 + Ray Jobs SDK已验收通过的基础上交付一个**可独立运行的最小“服务层”**
- 用户通过 **HTTP API** 提交训练任务PPO/GRPO/SFT
- 服务层分配一个**人类易读的任务 ID**`task_id`),并把任务放入队列。
- 后台调度器在资源满足时再向 Ray 集群提交 Ray Job并持续追踪 Ray Job 状态。
- 针对 `verl`**fail-fast 资源预检查**(资源不足直接 `ValueError` 失败)做“服务级重试/排队”,避免用户反复手工提交。
> 约束继承 v1.1head 不跑训练driver 必须落到 worker共享存储只考虑 NFS容器内 `/private`)。
---
## 1. 背景:为什么 v2.0 需要“服务层调度”
在 v1.1 中我们通过 Ray Job 提交 `verl` 训练任务。`verl` PPO/GRPO 在初始化 worker 时会创建资源池,并做一次 fail-fast 的资源检查:
- 触发点:`ResourcePoolManager.create_resource_pool()` 末尾调用 `_check_resource_available()`
- `_check_resource_available()` 使用 `ray._private.state.available_resources_per_node()` 统计“可用 GPU/NPU”如果不足则直接抛异常
- `ValueError: Total available GPUs 0 is less than total desired GPUs 8`
这是一种合理的选择(避免 Ray 层面无限 pending/卡死),但会带来一个平台侧问题:
- 当集群暂时没有足够资源时,用户提交会“立刻失败”,需要手动重试。
因此 v2.0 的服务层要提供:
- **队列 + gang 约束**:资源不满足则任务在服务层 pending不提交到 Ray
- **状态追踪**:一旦提交到 Ray持续获取 Ray Job 状态并回传给用户。
- **资源不足的“自动重试”**:即使发生 race提交时资源够、启动时被抢走也能识别该类失败并延迟重试。
---
## 2. v2.0 交付范围Scope
### 2.1 必做MVP v2.0
1) **HTTP API**(内部 token
- 提交任务、查询任务、取消任务、拉取日志(最小可用)。
2) **任务队列与调度器**
- FIFO先到先服务无配额/公平性(留给 v3+)。
- gang`nnodes` + `n_gpus_per_node` 的固定资源需求“全有才提交”。
3) **Ray Jobs SDK 集成**(不使用 `requests` 自己拼 HTTP
- 通过 `ray.job_submission.JobSubmissionClient` submit/status/stop/logs。
4) **可观测/可排障最小集**
- 每个 task/attempt 落盘配置、提交载荷、Ray 返回的 `submission_id`、关键日志。
5) **失败策略**
- 识别 “资源不足 fail-fast” 类失败 → 转为 `PENDING_RESOURCES` 并延迟重试。
- 其他失败保持 `FAILED`(不自动重试,避免掩盖错误)。
### 2.2 不做v2.0 不实现)
- 多租户/配额/优先级/公平性调度v3
- Pipeline多 job 串联v3+)。
- 完整 UIv3+v2.0 可只提供 OpenAPI/Swagger
- K8s 编排(明确不做,仍是 Native Ray
---
## 2.3 工程原则(开闭原则 / 复用 v1.1
v2.0 研发遵循开闭原则Open/Closed Principle
- **对扩展开放**新增“服务层API + scheduler + SQLite”能力以支持排队、重试、状态聚合。
- **对修改关闭**:尽量不改动 v1.1 已经稳定可用的 Ray Jobs SDK 提交链路代码。
落地方式:
- 将 `src/mvp/v1.1/py/mvp_v11/` 作为“成熟可用提交层”,原样拷贝到 `src/mvp/v2.0/py/mvp_v11/` 供 v2.0 复用。
- v2.0 的新增功能全部在新模块实现(例如 `src/mvp/v2.0/py/mvp_v2/`),通过组合/封装来调用 `mvp_v11`,避免在旧代码中掺杂平台逻辑。
---
## 3. 总体架构v2.0
### 3.1 组件
- **mvp-api**HTTP Server
- 接收 JobSpec结构化字段保持与 v1.1 一致的语义)
- 生成 `task_id` 并写入持久化
- 提供 query/cancel/logs
- **mvp-scheduler**(后台调度器,可与 api 同进程也可拆进程)
- 轮询队列:对 `PENDING_RESOURCES` 的任务做资源判断
- 资源满足 → 调用 Ray Jobs SDK 提交 → 记录 `ray_submission_id`
- 对 `SUBMITTED/RUNNING` 的任务持续同步 Ray Job 状态
- 如果 Ray Job 失败且命中资源不足模式 → 延迟重试
> 部署建议v2.0 先在 **head 容器**内运行该服务dev/prod 行为一致;生产环境只能 ssh 进入容器纳管)。
### 3.4 dev 环境目录约定(示例)
以当前远程开发机为例(`argus@h1`
- 宿主机目录:`/home2/argus/infra/mvp/v2/`
- 容器内挂载:`/workspace/mvp/v2/`
- 共享 NFS容器内统一为 `/private/`(与 v1.1 保持一致)
> 注意:服务脚本(`v2/scripts/*.sh`)应在**宿主机**执行,通过 `docker exec` 控制 head 容器;训练 driver 仍通过 Ray entrypoint_resources 强制落到 worker。
### 3.2 与 Ray/容器的关系
- 服务进程运行在 head或等价能访问 head 的 Job server 地址)。
- 提交时仍使用 v1.1 的强约束:
- head`--num-cpus=0 --num-gpus=0`
- worker`--resources='{\"worker_node\": 100}'`
- job entrypoint`entrypoint_resources={\"worker_node\": 1}` 强制 driver 落 worker
---
## 3.3 配置约定(复用 v1.1 dev.yaml 并扩展)
v2.0 的服务层API + scheduler建议复用 v1.1 已存在的 RayConfig 文件:
- `src/mvp/v1.1/py/configs/dev.yaml`
原因:
- 其中已包含 v1.1 运行所需的 Ray 基础配置Ray Job server address、entrypoint_resources、runtime_env 等v2.0 也需要同样的信息来提交 Ray Jobs。
扩展方式:
- 在该 YAML 中新增一个顶层 `v2:` section存放 v2 服务专属配置API 监听、SQLite 路径、scheduler 间隔等)。
- v1.1 submitter 只读取 `address/shared_root/entrypoint_* /runtime_env/user_code_path`,会忽略 `v2:` 之类的额外字段;因此不会破坏 v1.1。
最小新增项建议(示例):
- `v2.api.host` / `v2.api.port`
- `v2.auth.token_env`(内部 token 环境变量名)
- `v2.sqlite.db_path`(建议 `/private/common/db/mvp_v2.sqlite3`
- `v2.scheduler.tick_s` / `v2.scheduler.retry_interval_s` / `v2.scheduler.max_running_tasks`
---
## 4. 核心数据模型Task / Attempt
### 4.1 Task用户视角的任务
- `task_id`**人类易读**且唯一,例如:
- `mvp2-ppo-20251223-143201-7f3a`
- `workload``ppo|grpo|sft`
- `jobspec`:提交参数(**保持 v1.1 的 jobspec YAML 字段与语义**;服务端解析 YAML 后入库)
- `state`:见第 5 节状态机
- `created_at` / `updated_at`
- `latest_attempt`:指向当前 attempt
- `attempts[]`:历史尝试列表
- `error_summary`:面向用户的简短错误(最后一次失败原因)
### 4.2 Attempt一次真实的 Ray Job 提交)
- `attempt_no`:从 1 开始递增
- `ray_submission_id`:建议派生自 task_id
- `ray_submission_id = <task_id>--a01`
- 好处Ray 侧输出目录天然可读、可追溯
- `status`Ray Job 状态PENDING/RUNNING/SUCCEEDED/FAILED/STOPPED
- `start_time` / `end_time`
- `exit_code`(如可取)
- `failure_kind`(枚举):
- `INSUFFICIENT_RESOURCES`(匹配 “Total available GPUs … less than total desired …”)
- `USER_ERROR`(配置/数据路径错误等)
- `RUNTIME_ERROR`(代码异常)
- `UNKNOWN`
---
## 5. 状态机(服务侧)
建议最小状态集:
- `QUEUED`:已入队,尚未进行资源判断
- `PENDING_RESOURCES`:资源不足,等待(服务侧 pending不提交 Ray
- `SUBMITTING`:正在向 Ray 提交 attempt
- `SUBMITTED`Ray 已接受 submission拿到 `ray_submission_id`
- `RUNNING`Ray Job RUNNING
- `SUCCEEDED`:任务成功(终态)
- `FAILED`:任务失败(终态,除非命中“资源不足重试策略”)
- `CANCELED`:用户取消(终态)
关键转换:
- `QUEUED -> PENDING_RESOURCES`:资源不足
- `QUEUED/PENDING_RESOURCES -> SUBMITTING`:资源满足
- `SUBMITTING -> SUBMITTED`:提交成功
- `SUBMITTED -> RUNNING`Ray 状态推进
- `SUBMITTED/RUNNING -> SUCCEEDED|FAILED`Ray 终态
- `FAILED (INSUFFICIENT_RESOURCES) -> PENDING_RESOURCES`进入延迟重试attempt_no+1
---
## 6. 调度策略v2.0
### 6.1 资源计算(对齐 verl 的“可用资源”口径)
由于 verl 使用 `ray._private.state.available_resources_per_node()` 做“可用资源”统计,
v2.0 的 scheduler 应该尽量使用相同口径,避免:
- 我们认为够了 → 实际 verl 认为不够(仍 fail-fast
- 我们认为不够 → 实际够了(浪费)
策略(建议):
1) scheduler 周期性获取 per-node 可用 GPU
2) 计算 total_available_gpus = sum(node_gpu_available)
3) 任务需求 total_required_gpus = nnodes * n_gpus_per_node
4) 如果 `total_available_gpus < total_required_gpus``PENDING_RESOURCES`
注意v2.0 先只做总量判断;节点级分配(保证每个 node 恰好 n_gpus_per_node可作为 v2.1+(资源池/标签/节点纳管)增强点。
### 6.2 排队与并发
- 默认 FIFO。
- 并发度:允许同时跑多个任务,但必须保证资源足够。
- 简化实现:如果任务默认都吃满 8 卡,则 scheduler 实际上一次只能跑一个。
- 若未来支持小任务1*1、1*4可以自然并发。
### 6.3 重试策略(资源不足)
当出现下面模式时判定为 `INSUFFICIENT_RESOURCES`
- Ray Job `status=FAILED`
- `JobDetails.message``job logs` 中匹配:
- `Total available GPUs``less than total desired`
处理:
- 将 task 置为 `PENDING_RESOURCES`
- `next_run_at = now + 60s`固定间隔v2.1 可改指数退避)
- attempt_no++ 后重提(新 submission id
---
## 7. SQLite 持久化(队列/状态/attempt
v2.0 引入一个**最小但可恢复的持久化层**:使用 SQLite 保存任务队列与状态,确保:
- api/scheduler 进程重启后,队列不丢;
- task/attempt 历史可追溯;
- 能实现“服务侧 pending + 延迟重试”的确定性行为。
### 7.1 存放位置
建议路径(容器内):
- `DB_PATH=/private/common/db/mvp_v2.sqlite3`
说明:
- v2.0 默认单实例服务(单 writerSQLite 足够。
- 生产环境若 NFS 上的 SQLite 有锁/性能风险v2.1+ 再演进到 Postgres/Redisv2.0 先以“可回放/可恢复”为第一目标。
### 7.2 表设计(建议最小集合)
- `tasks`
- `task_id` (PK)
- `workload`
- `state`(服务侧状态机)
- `jobspec_yaml`(原始 YAML 文本,原样落盘便于审计/复现)
- `created_at`, `updated_at`
- `next_run_at`(用于 `PENDING_RESOURCES` 的延迟重试)
- `error_summary`
- `latest_attempt_no`
- `attempts`
- `task_id` (FK)
- `attempt_no`
- `ray_submission_id`
- `ray_status`
- `failure_kind`
- `message`(截断后的关键信息)
- `start_time`, `end_time`
- `events`(可选,但非常利于排障)
- `id` (PK)
- `task_id`
- `ts`
- `event_type`STATE_TRANSITION / SUBMIT / RAY_STATUS_SYNC / RETRY_SCHEDULED 等)
- `payload_json`
### 7.3 调度循环(与 SQLite 的交互)
scheduler 每个 tick 做三件事:
1) **挑选可运行任务**FIFO + next_run_at
- `state IN ('QUEUED','PENDING_RESOURCES') AND next_run_at <= now`
2) **资源判断**(对齐 verl 的可用资源口径):
- 不满足:更新 `state='PENDING_RESOURCES'`,并写入 `next_run_at=now+60s`
3) **提交 Ray Job 并追踪**
- 提交成功:写入 `attempts` 并更新 `tasks.latest_attempt_no``state='SUBMITTED'`
- 周期性同步 Ray 状态:`SUBMITTED/RUNNING -> SUCCEEDED/FAILED`
- 若失败命中资源不足模式:`FAILED -> PENDING_RESOURCES` + 计划下次重试
---
## 8. 接口与验收DoD
### 8.1 API 能力(最小集合)
详见 `specs/mvp/v2.0/v2_api.md`
### 8.2 验收口径DoD
1) API 提交 PPO/GRPO/SFT返回 `task_id`,并在 NFS 上创建任务目录。
2) 当集群忙GPU 不足)时:
- task 状态为 `PENDING_RESOURCES`(不是 FAILED
- 一旦资源释放,任务自动变为 `SUBMITTED/RUNNING`
3) 当 race 导致触发 verl fail-fast
- attempt 标记为 `INSUFFICIENT_RESOURCES`
- task 回到 `PENDING_RESOURCES`,并在 60s 后自动重试
4) 通过 API 查询 task 能看到:
- 当前 state
- 最新 attempt 的 `ray_submission_id`
- attempt 历史(至少包含开始/结束/失败原因)
5) Cancel 能停止正在运行的 Ray Job调用 Ray Jobs SDK stop
---
## 9. v2.0 交付物建议(目录)
`specs/mvp/v2.0/`(本目录):
- `v2_plan.md`:总体设计与开发计划(本文件)
- `v2_api.md`API 详细定义(请求/响应/字段/错误码)
代码建议位置(后续实现时):
- `src/mvp/v2.0/`
- `py/`API server + scheduler
- `scripts/`:启动/停止/查看状态(仍沿用 v1.1 的 compose/cluster 逻辑)

View File

@ -7,10 +7,12 @@ services:
command: sleep infinity
ports:
- "8265:8265"
- "8080:8080"
volumes:
- ../verl:/workspace/verl
- ../shared:/private
- .:/workspace/mvp/v1.1
- ../v2:/workspace/mvp/v2
shm_size: "10g"
ulimits:
nofile:

View File

@ -1,4 +1,8 @@
# Ray 基础配置dev 环境 / head 容器内视角)
#
# 说明:
# - v1.1 的 SDK submitter 会读取本文件作为 RayConfig。
# - v2.0 的 API 服务/调度器也复用本文件作为“基础 RayConfig”并在其上扩展 v2 专属配置项(见 v2:)。
address: "http://127.0.0.1:8265"
# 容器内共享根路径(对齐生产 /private
@ -18,3 +22,17 @@ runtime_env:
# 用户自定义代码目录(可被 PYTHONPATH 注入)
user_code_path: "/private/user/code"
# v2.0 服务层配置v1.1 submitter 会忽略这些字段v2.0 服务会读取)
v2:
api:
host: "0.0.0.0"
port: 8080
auth:
# 内部 token 建议通过环境变量提供,避免写入配置文件
token_env: "MVP_INTERNAL_TOKEN"
sqlite:
db_path: "/private/common/db/mvp_v2.sqlite3"
scheduler:
tick_s: 5
retry_interval_s: 60
max_running_tasks: 1

104
src/mvp/v2.0/README.md Normal file
View File

@ -0,0 +1,104 @@
# MVP v2.0(服务化入口)
v2.0 在 v1.1Ray Jobs SDK 提交链路)基础上新增一个**服务层**
- HTTP API 提交任务PPO/GRPO/SFT
- 服务侧队列 + gang 资源判断
- 识别 `verl` fail-fast 的资源不足失败并自动重试
- SQLite 持久化队列/状态/attemptNFS`/private`
设计文档见:
- `specs/mvp/v2.0/v2_plan.md`
- `specs/mvp/v2.0/v2_api.md`
## 快速开始dev 示例)
约定:
- Ray 容器仍由 v1.1 的 `docker-compose.yaml` 启动head+2 workers
- v2 代码在宿主机:`/home2/argus/infra/mvp/v2/`(容器内挂载 `/workspace/mvp/v2/`
- v2 配置复用 v1.1`/workspace/mvp/v1.1/py/configs/dev.yaml`(扩展了 `v2:` 段)
宿主机执行:
```bash
export MVP_INTERNAL_TOKEN=... # 内部 token
cd /home2/argus/infra/mvp/v2/scripts
./12_install_v2_deps.sh
./20_start_api.sh
./22_status_api.sh
```
API 测试(宿主机):
```bash
curl -H "Authorization: Bearer ${MVP_INTERNAL_TOKEN}" http://127.0.0.1:8080/api/v2/queue
```
> 进程日志与 pid容器内路径默认在 `/private/common/logs/``/private/common/run/`
## 提交/查询/停止任务
约定:
- API 地址(宿主机视角):`http://127.0.0.1:8080`
- 鉴权:`Authorization: Bearer ${MVP_INTERNAL_TOKEN}`
- 请求体:**raw YAML**JobSpec格式与 v1.1 jobspec 一致)
### 1) 提交任务POST /api/v2/tasks
准备一个 jobspec示例PPO
```yaml
workload: "ppo"
submission_id: "" # v2 会忽略/覆盖,自动生成 task_id 并派生 ray_submission_id
code_path: "/private/common/code/verl/verl_repo"
model_id: "Qwen/Qwen2.5-0.5B-Instruct"
train_file: "/private/datasets/gsm8k/train.parquet"
val_file: "/private/datasets/gsm8k/test.parquet"
nnodes: 2
n_gpus_per_node: 4
total_epochs: 1
total_training_steps: 10
save_freq: 10
test_freq: -1
trainer_device: null
```
提交:
```bash
curl -sS \
-H "Authorization: Bearer ${MVP_INTERNAL_TOKEN}" \
-H "Content-Type: application/yaml" \
--data-binary @jobspec.yaml \
http://127.0.0.1:8080/api/v2/tasks
```
返回示例:
```json
{"task_id":"mvp2-ppo-20251223-082813-6426","state":"QUEUED"}
```
### 2) 查询任务GET /api/v2/tasks/{task_id}
```bash
curl -sS \
-H "Authorization: Bearer ${MVP_INTERNAL_TOKEN}" \
http://127.0.0.1:8080/api/v2/tasks/<task_id> | python3 -m json.tool
```
可选:
- 查看 attempts`GET /api/v2/tasks/{task_id}/attempts`
- 拉取日志latest attempt`GET /api/v2/tasks/{task_id}/logs?tail=2000`
- 查看队列:`GET /api/v2/queue`
### 3) 停止/取消任务POST /api/v2/tasks/{task_id}:cancel
```bash
curl -sS -X POST \
-H "Authorization: Bearer ${MVP_INTERNAL_TOKEN}" \
http://127.0.0.1:8080/api/v2/tasks/<task_id>:cancel
```
说明:
- 若任务已提交到 Ray`SUBMITTED/RUNNING`),服务会调用 Ray Jobs SDK `stop_job(ray_submission_id)`
- 若任务仍在队列(`QUEUED/PENDING_RESOURCES`),服务直接标记 `CANCELED`(不会产生 attempt

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,96 @@
from __future__ import annotations
from dataclasses import dataclass
from .models import JobSpec
@dataclass(frozen=True)
class BuiltCommand:
argv: list[str]
def build_training_argv(spec: JobSpec, submission_id: str, job_dir: str) -> BuiltCommand:
"""
Returns argv for the actual training process (Hydra overrides preserved).
This argv is executed by a lightweight Python driver entrypoint.
"""
if spec.workload in ("ppo", "grpo"):
algo_overrides: list[str] = []
if spec.workload == "grpo":
algo_overrides.append("algorithm.adv_estimator=grpo")
test_freq = spec.test_freq if spec.test_freq is not None else -1
val_file = spec.val_file if spec.val_file is not None else "null"
argv = [
"python3",
"-m",
"verl.trainer.main_ppo",
f"data.train_files={spec.train_file}",
f"data.val_files={val_file}",
"data.train_batch_size=256",
"data.max_prompt_length=512",
"data.max_response_length=512",
f"actor_rollout_ref.model.path={spec.model_id}",
"actor_rollout_ref.actor.optim.lr=1e-6",
"actor_rollout_ref.actor.ppo_mini_batch_size=64",
"actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4",
"actor_rollout_ref.rollout.name=sglang",
"actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8",
"actor_rollout_ref.rollout.tensor_model_parallel_size=1",
"actor_rollout_ref.rollout.gpu_memory_utilization=0.4",
"actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4",
"critic.optim.lr=1e-5",
f"critic.model.path={spec.model_id}",
"critic.ppo_micro_batch_size_per_gpu=4",
"algorithm.kl_ctrl.kl_coef=0.001",
*algo_overrides,
"trainer.logger=console",
"trainer.val_before_train=False",
f"trainer.n_gpus_per_node={spec.n_gpus_per_node}",
f"trainer.nnodes={spec.nnodes}",
f"trainer.save_freq={spec.save_freq}",
f"trainer.test_freq={test_freq}",
f"trainer.total_epochs={spec.total_epochs}",
f"trainer.total_training_steps={spec.total_training_steps}",
"trainer.resume_mode=disable",
f"trainer.default_local_dir={job_dir}/checkpoints",
"+ray_kwargs.ray_init.address=auto",
f"hydra.run.dir={job_dir}/logs/hydra",
]
return BuiltCommand(argv=argv)
if spec.workload == "sft":
val_override = "null" if spec.val_file is None else spec.val_file
trainer_device = spec.trainer_device or "cpu"
argv = [
"python3",
"-m",
"verl.trainer.sft_trainer_ray",
f"model.path={spec.model_id}",
f"data.train_files={spec.train_file}",
f"data.val_files={val_override}",
"data.train_batch_size=64",
"data.micro_batch_size_per_gpu=1",
"data.max_token_len_per_gpu=2048",
"data.max_length=1024",
"trainer.logger=console",
"trainer.project_name=mvp11-sft",
f"trainer.experiment_name={submission_id}",
f"trainer.total_epochs={spec.total_epochs}",
f"trainer.total_training_steps={spec.total_training_steps}",
f"trainer.save_freq={spec.save_freq}",
"trainer.test_freq=-1",
"trainer.resume_mode=disable",
f"trainer.device={trainer_device}",
f"trainer.default_local_dir={job_dir}/checkpoints",
f"trainer.nnodes={spec.nnodes}",
f"trainer.n_gpus_per_node={spec.n_gpus_per_node}",
f"hydra.run.dir={job_dir}/logs/hydra",
]
return BuiltCommand(argv=argv)
raise ValueError(f"unsupported workload: {spec.workload}")

View File

@ -0,0 +1,63 @@
from __future__ import annotations
import argparse
import os
import shlex
import subprocess
import sys
from pathlib import Path
def _preflight() -> None:
print("MVP_PRECHECK_PYTHON:", sys.executable, flush=True)
print("MVP_PRECHECK_PYTHONPATH:", os.environ.get("PYTHONPATH"), flush=True)
print("MVP_PRECHECK_MVP_CODE_PATH:", os.environ.get("MVP_CODE_PATH"), flush=True)
try:
import verl # type: ignore
print("MVP_PRECHECK_VERL_FILE:", getattr(verl, "__file__", None), flush=True)
except Exception as e:
print("MVP_PRECHECK_VERL_IMPORT_ERROR:", repr(e), flush=True)
try:
import mvp_marker # type: ignore
print("MVP_PRECHECK_MARKER:", getattr(mvp_marker, "MARKER", None), flush=True)
except Exception as e:
print("MVP_PRECHECK_MARKER_MISSING:", repr(e), flush=True)
def main() -> int:
parser = argparse.ArgumentParser()
parser.add_argument("--job-dir", required=True)
parser.add_argument("cmd", nargs=argparse.REMAINDER)
args = parser.parse_args()
job_dir = Path(args.job_dir)
job_dir.mkdir(parents=True, exist_ok=True)
_preflight()
if not args.cmd:
print("no command provided", file=sys.stderr)
return 2
# argparse includes the leading "--" if the caller uses it; strip it.
cmd = list(args.cmd)
if cmd and cmd[0] == "--":
cmd = cmd[1:]
if not cmd:
print("no command provided", file=sys.stderr)
return 2
# Execute training command as a subprocess so that logs are captured by Ray job logs.
cmd_str = " ".join(shlex.quote(x) for x in cmd)
print("MVP_DRIVER_EXEC:", cmd_str, flush=True)
proc = subprocess.run(cmd, check=False)
print("MVP_DRIVER_EXIT_CODE:", proc.returncode, flush=True)
return proc.returncode
if __name__ == "__main__":
raise SystemExit(main())

View File

@ -0,0 +1,121 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import Any
def _require(d: dict[str, Any], key: str) -> Any:
if key not in d or d[key] in (None, ""):
raise ValueError(f"missing required field: {key}")
return d[key]
@dataclass(frozen=True)
class RayConfig:
address: str
shared_root: str
entrypoint_num_cpus: float
entrypoint_resources: dict[str, float]
runtime_env_env_vars: dict[str, str]
user_code_path: str
@staticmethod
def from_dict(d: dict[str, Any]) -> "RayConfig":
runtime_env = d.get("runtime_env") or {}
env_vars = (runtime_env.get("env_vars") or {}) if isinstance(runtime_env, dict) else {}
if not isinstance(env_vars, dict):
raise ValueError("runtime_env.env_vars must be a mapping")
entrypoint_resources = d.get("entrypoint_resources") or {}
if not isinstance(entrypoint_resources, dict):
raise ValueError("entrypoint_resources must be a mapping")
return RayConfig(
address=str(_require(d, "address")),
shared_root=str(_require(d, "shared_root")),
entrypoint_num_cpus=float(d.get("entrypoint_num_cpus", 1)),
entrypoint_resources={str(k): float(v) for k, v in entrypoint_resources.items()},
runtime_env_env_vars={str(k): str(v) for k, v in env_vars.items()},
user_code_path=str(d.get("user_code_path", f"{_require(d, 'shared_root')}/user/code")),
)
def to_public_dict(self) -> dict[str, Any]:
return {
"address": self.address,
"shared_root": self.shared_root,
"entrypoint_num_cpus": self.entrypoint_num_cpus,
"entrypoint_resources": self.entrypoint_resources,
"runtime_env": {"env_vars": self.runtime_env_env_vars},
"user_code_path": self.user_code_path,
}
@dataclass(frozen=True)
class JobSpec:
workload: str # ppo|grpo|sft
submission_id: str | None
code_path: str
model_id: str
train_file: str
val_file: str | None
nnodes: int
n_gpus_per_node: int
total_epochs: int
total_training_steps: int
save_freq: int
test_freq: int | None
trainer_device: str | None # only for sft (driver-side device)
@staticmethod
def from_dict(d: dict[str, Any]) -> "JobSpec":
workload = str(_require(d, "workload"))
if workload not in ("ppo", "grpo", "sft"):
raise ValueError(f"unsupported workload: {workload}")
val_file = d.get("val_file", None)
if val_file in ("", "null"):
val_file = None
test_freq = d.get("test_freq", None)
if test_freq in ("", "null"):
test_freq = None
return JobSpec(
workload=workload,
submission_id=(str(d["submission_id"]) if d.get("submission_id") else None),
code_path=str(_require(d, "code_path")),
model_id=str(_require(d, "model_id")),
train_file=str(_require(d, "train_file")),
val_file=(str(val_file) if val_file is not None else None),
nnodes=int(d.get("nnodes", 2)),
n_gpus_per_node=int(d.get("n_gpus_per_node", 4)),
total_epochs=int(d.get("total_epochs", 1)),
total_training_steps=int(d.get("total_training_steps", 10)),
save_freq=int(d.get("save_freq", 10)),
test_freq=(int(test_freq) if test_freq is not None else None),
trainer_device=(str(d.get("trainer_device")) if d.get("trainer_device") else None),
)
def to_public_dict(self) -> dict[str, Any]:
out: dict[str, Any] = {
"workload": self.workload,
"submission_id": self.submission_id or "",
"code_path": self.code_path,
"model_id": self.model_id,
"train_file": self.train_file,
"val_file": self.val_file,
"nnodes": self.nnodes,
"n_gpus_per_node": self.n_gpus_per_node,
"total_epochs": self.total_epochs,
"total_training_steps": self.total_training_steps,
"save_freq": self.save_freq,
"test_freq": self.test_freq,
}
if self.workload == "sft":
out["trainer_device"] = self.trainer_device or "cpu"
return out

View File

@ -0,0 +1,171 @@
from __future__ import annotations
import json
import os
import shlex
from datetime import datetime
from pathlib import Path
from typing import Any
import ray
from ray.job_submission import JobSubmissionClient
from .builders import build_training_argv
from .models import JobSpec, RayConfig
from .yaml_io import dump_yaml
def _ts() -> str:
return datetime.now().strftime("%Y%m%d_%H%M%S")
def _mkdir(p: Path) -> None:
p.mkdir(parents=True, exist_ok=True)
def _write_text(p: Path, content: str) -> None:
_mkdir(p.parent)
p.write_text(content, encoding="utf-8")
def _write_json(p: Path, obj: Any) -> None:
_write_text(p, json.dumps(obj, indent=2, ensure_ascii=False) + "\n")
def _safe_basename(path: str) -> str:
return path.rstrip("/").split("/")[-1]
class RayJobTool:
def __init__(self, cfg: RayConfig):
self.cfg = cfg
self.client = JobSubmissionClient(cfg.address)
def _job_dir(self, submission_id: str) -> str:
return f"{self.cfg.shared_root}/jobs/{submission_id}"
def _runtime_env(self, spec: JobSpec) -> dict[str, Any]:
env_vars = dict(self.cfg.runtime_env_env_vars)
# Default HF cache
env_vars.setdefault("HF_HOME", f"{self.cfg.shared_root}/hf")
env_vars.setdefault("HUGGINGFACE_HUB_CACHE", f"{self.cfg.shared_root}/hf/hub")
env_vars.setdefault("TRANSFORMERS_CACHE", f"{self.cfg.shared_root}/hf/transformers")
env_vars.setdefault("PYTHONUNBUFFERED", "1")
# Tool code path must be importable on workers (compose mounts v1.1 into all containers).
# Place it before verl code to avoid interfering with verl import priority.
tool_code_path = os.environ.get("MVP_TOOL_CODE_PATH", "/workspace/mvp/v1.1/py")
user_code_path = self.cfg.user_code_path
code_path = spec.code_path
existing = env_vars.get("PYTHONPATH", "")
prefix = f"{tool_code_path}:{code_path}:{user_code_path}"
env_vars["PYTHONPATH"] = f"{prefix}:{existing}" if existing else prefix
# For debugging / log visibility
env_vars["MVP_CODE_PATH"] = code_path
# SFT: ensure ray.init() connects to the cluster
if spec.workload == "sft":
env_vars.setdefault("RAY_ADDRESS", "auto")
return {"env_vars": env_vars}
def submit(self, spec: JobSpec, no_wait: bool) -> str:
submission_id = spec.submission_id or f"mvp11_{spec.workload}_{_ts()}_{os.getpid()}"
job_dir = self._job_dir(submission_id)
built = build_training_argv(spec, submission_id=submission_id, job_dir=job_dir)
entrypoint_argv = [
"python3",
"-m",
"mvp_v11.driver_entrypoint",
"--job-dir",
job_dir,
*built.argv,
]
entrypoint = " ".join(shlex.quote(x) for x in entrypoint_argv)
runtime_env = self._runtime_env(spec)
# Prepare job artifacts directory
job_root = Path(job_dir)
_mkdir(job_root / "config")
_mkdir(job_root / "logs")
_mkdir(job_root / "debug")
_mkdir(job_root / "checkpoints")
_write_text(job_root / "config" / "ray_config.yaml", dump_yaml(self.cfg.to_public_dict()))
_write_text(job_root / "config" / "jobspec.yaml", dump_yaml(spec.to_public_dict()))
_write_json(job_root / "config" / "submit_payload.json", {
"submission_id": submission_id,
"address": self.cfg.address,
"entrypoint": entrypoint,
"entrypoint_num_cpus": self.cfg.entrypoint_num_cpus,
"entrypoint_resources": self.cfg.entrypoint_resources,
"runtime_env": runtime_env,
})
# Pre-submit debug snapshot (ray cluster resources via ray.init)
try:
ray.init(address="auto", ignore_reinit_error=True, log_to_driver=False)
_write_json(job_root / "debug" / "ray_cluster_resources_pre.json", ray.cluster_resources())
_write_json(job_root / "debug" / "ray_available_resources_pre.json", ray.available_resources())
except Exception as e:
_write_text(job_root / "debug" / "ray_resources_pre.error.txt", repr(e) + "\n")
try:
submitted = self.client.submit_job(
entrypoint=entrypoint,
submission_id=submission_id,
runtime_env=runtime_env,
entrypoint_num_cpus=self.cfg.entrypoint_num_cpus,
entrypoint_resources=self.cfg.entrypoint_resources,
)
except Exception as e:
_write_text(job_root / "logs" / "submit.error.txt", repr(e) + "\n")
raise
_write_text(job_root / "config" / "ray_submission_id.txt", submitted + "\n")
# Post-submit debug snapshot via SDK
try:
jobs = self.client.list_jobs()
_write_text(
job_root / "debug" / "ray_job_list_post.json",
json.dumps([_job_details_to_dict(j) for j in jobs], indent=2) + "\n",
)
except Exception as e:
_write_text(job_root / "debug" / "ray_job_list_post.error.txt", repr(e) + "\n")
if not no_wait:
# caller can separately wait; keep submit non-blocking by default in scripts
pass
return submitted
def status(self, submission_id: str) -> str:
return str(self.client.get_job_status(submission_id))
def stop(self, submission_id: str) -> bool:
return bool(self.client.stop_job(submission_id))
def logs(self, submission_id: str) -> str:
return self.client.get_job_logs(submission_id)
def list(self) -> list[dict[str, Any]]:
return [_job_details_to_dict(j) for j in self.client.list_jobs()]
def _job_details_to_dict(obj: Any) -> dict[str, Any]:
# Ray uses pydantic models internally, but depending on bundled pydantic version
# we might get `.model_dump()` (v2) or `.dict()` (v1).
if hasattr(obj, "model_dump"):
return obj.model_dump() # type: ignore[no-any-return]
if hasattr(obj, "dict"):
return obj.dict() # type: ignore[no-any-return]
if hasattr(obj, "__dict__"):
return dict(obj.__dict__)
return {"repr": repr(obj)}

View File

@ -0,0 +1,21 @@
from __future__ import annotations
from pathlib import Path
from typing import Any
import yaml
def load_yaml(path: str) -> dict[str, Any]:
p = Path(path)
data = yaml.safe_load(p.read_text(encoding="utf-8"))
if data is None:
return {}
if not isinstance(data, dict):
raise ValueError(f"yaml root must be a mapping: {path}")
return data
def dump_yaml(data: dict[str, Any]) -> str:
return yaml.safe_dump(data, sort_keys=False, allow_unicode=True)

View File

@ -0,0 +1,2 @@
__all__ = []

View File

@ -0,0 +1,190 @@
from __future__ import annotations
import os
import threading
from typing import Any
import yaml
from fastapi import FastAPI, HTTPException, Request, Response
from mvp_v11.models import JobSpec, RayConfig
from .config import V2Config
from .db import Db
from .ids import new_task_id
from .scheduler import Scheduler
def _utc_now_iso() -> str:
from datetime import datetime
return datetime.utcnow().replace(microsecond=0).isoformat() + "Z"
def _load_yaml_file(path: str) -> dict[str, Any]:
with open(path, "r", encoding="utf-8") as f:
obj = yaml.safe_load(f) or {}
if not isinstance(obj, dict):
raise ValueError("config yaml must be a mapping")
return obj
def create_app(config_path: str) -> FastAPI:
root = _load_yaml_file(config_path)
ray_cfg = RayConfig.from_dict(root)
v2_cfg = V2Config.from_root_dict(root)
db = Db(v2_cfg.sqlite.db_path)
db.init()
scheduler = Scheduler(db=db, ray_cfg=ray_cfg, v2_cfg=v2_cfg)
stop_flag = threading.Event()
tool = scheduler.tool
app = FastAPI(title="mvp-v2", version="2.0")
def _require_token(req: Request) -> None:
token_env = v2_cfg.auth.token_env
expected = os.environ.get(token_env, "")
if not expected:
# Misconfigured service; treat as server error.
raise HTTPException(status_code=500, detail=f"missing token env: {token_env}")
auth = req.headers.get("authorization") or ""
if not auth.startswith("Bearer "):
raise HTTPException(status_code=401, detail="missing bearer token")
got = auth.removeprefix("Bearer ").strip()
if got != expected:
raise HTTPException(status_code=401, detail="invalid token")
@app.on_event("startup")
def _startup() -> None:
t = threading.Thread(target=scheduler.run_forever, args=(stop_flag,), daemon=True)
t.start()
@app.on_event("shutdown")
def _shutdown() -> None:
stop_flag.set()
@app.post("/api/v2/tasks")
async def submit_task(req: Request) -> dict[str, Any]:
_require_token(req)
body = (await req.body()).decode("utf-8")
obj = yaml.safe_load(body) or {}
if not isinstance(obj, dict):
raise HTTPException(status_code=400, detail="jobspec must be a YAML mapping")
try:
spec = JobSpec.from_dict(obj)
except Exception as e:
raise HTTPException(status_code=400, detail=f"invalid jobspec: {e!r}")
task_id = new_task_id(spec.workload)
db.create_task(
task_id=task_id,
workload=spec.workload,
jobspec_yaml=body,
nnodes=spec.nnodes,
n_gpus_per_node=spec.n_gpus_per_node,
)
return {"task_id": task_id, "state": "QUEUED"}
@app.get("/api/v2/tasks/{task_id}")
async def get_task(task_id: str, req: Request) -> dict[str, Any]:
_require_token(req)
row = db.get_task(task_id)
if not row:
raise HTTPException(status_code=404, detail="task not found")
attempts = db.list_attempts(task_id)
latest_attempt = attempts[-1] if attempts else None
desired = {
"nnodes": int(row["nnodes"]),
"n_gpus_per_node": int(row["n_gpus_per_node"]),
"total_gpus": int(row["nnodes"]) * int(row["n_gpus_per_node"]),
}
out: dict[str, Any] = {
"task_id": row["task_id"],
"workload": row["workload"],
"state": row["state"],
"created_at": row.get("created_at"),
"updated_at": row.get("updated_at"),
"desired_resources": desired,
"error_summary": row.get("error_summary"),
}
if latest_attempt:
out["latest_attempt"] = {
"attempt_no": latest_attempt["attempt_no"],
"ray_submission_id": latest_attempt["ray_submission_id"],
"ray_status": latest_attempt.get("ray_status"),
"start_time": latest_attempt.get("start_time"),
"end_time": latest_attempt.get("end_time"),
"failure_kind": latest_attempt.get("failure_kind"),
"message": latest_attempt.get("message"),
}
return out
@app.get("/api/v2/tasks/{task_id}/attempts")
async def get_attempts(task_id: str, req: Request) -> dict[str, Any]:
_require_token(req)
row = db.get_task(task_id)
if not row:
raise HTTPException(status_code=404, detail="task not found")
return {"task_id": task_id, "attempts": db.list_attempts(task_id)}
@app.post("/api/v2/tasks/{task_id}:cancel")
async def cancel(task_id: str, req: Request) -> dict[str, Any]:
_require_token(req)
row = db.get_task(task_id)
if not row:
raise HTTPException(status_code=404, detail="task not found")
state = str(row["state"])
if state in ("SUCCEEDED", "FAILED", "CANCELED"):
raise HTTPException(status_code=409, detail=f"task already terminal: {state}")
attempts = db.list_attempts(task_id)
if attempts:
ray_sid = str(attempts[-1]["ray_submission_id"])
try:
tool.stop(ray_sid)
except Exception:
pass
# Mark attempt as canceled on the service side so that API doesn't keep reporting RUNNING.
# Ray stop is async; we deliberately reflect the user's intent here.
db.update_attempt(
task_id=task_id,
attempt_no=int(attempts[-1]["attempt_no"]),
ray_status="STOPPED",
failure_kind="CANCELED",
message="Canceled by user via API (Ray stop requested).",
end_time=_utc_now_iso(),
)
db.set_task_state(task_id=task_id, state="CANCELED", event_type="CANCELED")
return {"task_id": task_id, "state": "CANCELED"}
@app.get("/api/v2/tasks/{task_id}/logs")
async def logs(task_id: str, req: Request, tail: int = 2000, attempt: str = "latest") -> Response:
_require_token(req)
row = db.get_task(task_id)
if not row:
raise HTTPException(status_code=404, detail="task not found")
attempts = db.list_attempts(task_id)
if not attempts:
raise HTTPException(status_code=404, detail="no attempts yet")
a = attempts[-1] if attempt == "latest" else None
if a is None:
raise HTTPException(status_code=400, detail="only attempt=latest supported in v2.0")
ray_sid = str(a["ray_submission_id"])
text = tool.logs(ray_sid)
if tail and tail > 0:
lines = text.splitlines()
text = "\n".join(lines[-tail:]) + ("\n" if lines else "")
return Response(content=text, media_type="text/plain")
@app.get("/api/v2/queue")
async def queue(req: Request) -> dict[str, Any]:
_require_token(req)
return db.list_queue()
return app

View File

@ -0,0 +1,68 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import Any
@dataclass(frozen=True)
class V2ApiConfig:
host: str = "0.0.0.0"
port: int = 8080
@dataclass(frozen=True)
class V2AuthConfig:
token_env: str = "MVP_INTERNAL_TOKEN"
@dataclass(frozen=True)
class V2SqliteConfig:
db_path: str
@dataclass(frozen=True)
class V2SchedulerConfig:
tick_s: int = 5
retry_interval_s: int = 60
max_running_tasks: int = 1
@dataclass(frozen=True)
class V2Config:
api: V2ApiConfig
auth: V2AuthConfig
sqlite: V2SqliteConfig
scheduler: V2SchedulerConfig
@staticmethod
def from_root_dict(root: dict[str, Any]) -> "V2Config":
v2 = root.get("v2") or {}
if not isinstance(v2, dict):
raise ValueError("config.v2 must be a mapping")
api = v2.get("api") or {}
auth = v2.get("auth") or {}
sqlite = v2.get("sqlite") or {}
scheduler = v2.get("scheduler") or {}
if not isinstance(api, dict) or not isinstance(auth, dict) or not isinstance(sqlite, dict) or not isinstance(scheduler, dict):
raise ValueError("config.v2.{api,auth,sqlite,scheduler} must be mappings")
shared_root = str(root.get("shared_root") or "/private")
default_db_path = f"{shared_root}/common/db/mvp_v2.sqlite3"
db_path = str(sqlite.get("db_path") or default_db_path)
return V2Config(
api=V2ApiConfig(
host=str(api.get("host") or "0.0.0.0"),
port=int(api.get("port") or 8080),
),
auth=V2AuthConfig(token_env=str(auth.get("token_env") or "MVP_INTERNAL_TOKEN")),
sqlite=V2SqliteConfig(db_path=db_path),
scheduler=V2SchedulerConfig(
tick_s=int(scheduler.get("tick_s") or 5),
retry_interval_s=int(scheduler.get("retry_interval_s") or 60),
max_running_tasks=int(scheduler.get("max_running_tasks") or 1),
),
)

View File

@ -0,0 +1,254 @@
from __future__ import annotations
import os
import sqlite3
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Any, Iterator
def _utc_now_iso() -> str:
# Keep it simple; wall-clock ordering only.
import datetime as _dt
return _dt.datetime.utcnow().replace(microsecond=0).isoformat() + "Z"
@dataclass(frozen=True)
class Db:
db_path: str
def _connect(self) -> sqlite3.Connection:
os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
conn = sqlite3.connect(self.db_path, timeout=30, isolation_level=None)
conn.row_factory = sqlite3.Row
conn.execute("PRAGMA journal_mode=WAL;")
conn.execute("PRAGMA foreign_keys=ON;")
return conn
def init(self) -> None:
with self._connect() as conn:
conn.execute(
"""
CREATE TABLE IF NOT EXISTS tasks (
task_id TEXT PRIMARY KEY,
workload TEXT NOT NULL,
state TEXT NOT NULL,
jobspec_yaml TEXT NOT NULL,
nnodes INTEGER NOT NULL,
n_gpus_per_node INTEGER NOT NULL,
created_at TEXT NOT NULL,
updated_at TEXT NOT NULL,
next_run_at TEXT,
error_summary TEXT,
latest_attempt_no INTEGER NOT NULL DEFAULT 0
)
"""
)
conn.execute(
"""
CREATE TABLE IF NOT EXISTS attempts (
task_id TEXT NOT NULL,
attempt_no INTEGER NOT NULL,
ray_submission_id TEXT NOT NULL UNIQUE,
ray_status TEXT,
failure_kind TEXT,
message TEXT,
start_time TEXT NOT NULL,
end_time TEXT,
PRIMARY KEY (task_id, attempt_no),
FOREIGN KEY (task_id) REFERENCES tasks(task_id) ON DELETE CASCADE
)
"""
)
conn.execute(
"""
CREATE TABLE IF NOT EXISTS events (
id INTEGER PRIMARY KEY AUTOINCREMENT,
task_id TEXT,
ts TEXT NOT NULL,
event_type TEXT NOT NULL,
payload_json TEXT,
FOREIGN KEY (task_id) REFERENCES tasks(task_id) ON DELETE CASCADE
)
"""
)
@contextmanager
def tx(self) -> Iterator[sqlite3.Connection]:
conn = self._connect()
try:
conn.execute("BEGIN IMMEDIATE;")
yield conn
conn.execute("COMMIT;")
except Exception:
conn.execute("ROLLBACK;")
raise
finally:
conn.close()
def create_task(self, *, task_id: str, workload: str, jobspec_yaml: str, nnodes: int, n_gpus_per_node: int) -> dict[str, Any]:
now = _utc_now_iso()
with self.tx() as conn:
conn.execute(
"""
INSERT INTO tasks (task_id, workload, state, jobspec_yaml, nnodes, n_gpus_per_node, created_at, updated_at)
VALUES (?, ?, 'QUEUED', ?, ?, ?, ?, ?)
""",
(task_id, workload, jobspec_yaml, nnodes, n_gpus_per_node, now, now),
)
conn.execute(
"INSERT INTO events (task_id, ts, event_type, payload_json) VALUES (?, ?, 'TASK_CREATED', ?)",
(task_id, now, None),
)
row = conn.execute("SELECT * FROM tasks WHERE task_id = ?", (task_id,)).fetchone()
return dict(row) if row else {}
def get_task(self, task_id: str) -> dict[str, Any] | None:
with self._connect() as conn:
row = conn.execute("SELECT * FROM tasks WHERE task_id = ?", (task_id,)).fetchone()
return dict(row) if row else None
def list_attempts(self, task_id: str) -> list[dict[str, Any]]:
with self._connect() as conn:
rows = conn.execute(
"SELECT * FROM attempts WHERE task_id = ? ORDER BY attempt_no ASC", (task_id,)
).fetchall()
return [dict(r) for r in rows]
def list_queue(self) -> dict[str, list[dict[str, Any]]]:
with self._connect() as conn:
pending = conn.execute(
"""
SELECT task_id, workload, state, nnodes, n_gpus_per_node, next_run_at, created_at, updated_at
FROM tasks
WHERE state IN ('QUEUED','PENDING_RESOURCES')
ORDER BY created_at ASC
LIMIT 200
"""
).fetchall()
running = conn.execute(
"""
SELECT task_id, workload, state, nnodes, n_gpus_per_node, latest_attempt_no, created_at, updated_at
FROM tasks
WHERE state IN ('SUBMITTING','SUBMITTED','RUNNING')
ORDER BY updated_at ASC
LIMIT 200
"""
).fetchall()
return {"pending": [dict(r) for r in pending], "running": [dict(r) for r in running]}
def count_running(self) -> int:
with self._connect() as conn:
row = conn.execute(
"SELECT COUNT(1) AS n FROM tasks WHERE state IN ('SUBMITTING','SUBMITTED','RUNNING')"
).fetchone()
return int(row["n"]) if row else 0
def list_active_tasks(self, limit: int = 50) -> list[dict[str, Any]]:
with self._connect() as conn:
rows = conn.execute(
"SELECT * FROM tasks WHERE state IN ('SUBMITTING','SUBMITTED','RUNNING') ORDER BY updated_at ASC LIMIT ?",
(int(limit),),
).fetchall()
return [dict(r) for r in rows]
def pick_next_runnable_task(self) -> dict[str, Any] | None:
now = _utc_now_iso()
with self._connect() as conn:
row = conn.execute(
"""
SELECT *
FROM tasks
WHERE state IN ('QUEUED','PENDING_RESOURCES')
AND (next_run_at IS NULL OR next_run_at <= ?)
ORDER BY created_at ASC
LIMIT 1
""",
(now,),
).fetchone()
return dict(row) if row else None
def set_task_state(
self,
*,
task_id: str,
state: str,
error_summary: str | None = None,
next_run_at: str | None = None,
latest_attempt_no: int | None = None,
event_type: str = "STATE_UPDATE",
payload_json: str | None = None,
) -> None:
now = _utc_now_iso()
with self.tx() as conn:
sets = ["state = ?", "updated_at = ?"]
params: list[Any] = [state, now]
if error_summary is not None:
sets.append("error_summary = ?")
params.append(error_summary)
if next_run_at is not None:
sets.append("next_run_at = ?")
params.append(next_run_at)
if latest_attempt_no is not None:
sets.append("latest_attempt_no = ?")
params.append(int(latest_attempt_no))
params.append(task_id)
conn.execute(f"UPDATE tasks SET {', '.join(sets)} WHERE task_id = ?", tuple(params))
conn.execute(
"INSERT INTO events (task_id, ts, event_type, payload_json) VALUES (?, ?, ?, ?)",
(task_id, now, event_type, payload_json),
)
def create_attempt(self, *, task_id: str, attempt_no: int, ray_submission_id: str) -> None:
now = _utc_now_iso()
with self.tx() as conn:
conn.execute(
"""
INSERT INTO attempts (task_id, attempt_no, ray_submission_id, ray_status, start_time)
VALUES (?, ?, ?, ?, ?)
""",
(task_id, attempt_no, ray_submission_id, "SUBMITTING", now),
)
conn.execute(
"INSERT INTO events (task_id, ts, event_type, payload_json) VALUES (?, ?, 'ATTEMPT_CREATED', ?)",
(task_id, now, None),
)
def update_attempt(
self,
*,
task_id: str,
attempt_no: int,
ray_status: str | None = None,
failure_kind: str | None = None,
message: str | None = None,
end_time: str | None = None,
) -> None:
now = _utc_now_iso()
with self.tx() as conn:
sets = []
params: list[Any] = []
if ray_status is not None:
sets.append("ray_status = ?")
params.append(ray_status)
if failure_kind is not None:
sets.append("failure_kind = ?")
params.append(failure_kind)
if message is not None:
sets.append("message = ?")
params.append(message)
if end_time is not None:
sets.append("end_time = ?")
params.append(end_time)
if not sets:
return
params.extend([task_id, attempt_no])
conn.execute(
f"UPDATE attempts SET {', '.join(sets)} WHERE task_id = ? AND attempt_no = ?",
tuple(params),
)
conn.execute(
"INSERT INTO events (task_id, ts, event_type, payload_json) VALUES (?, ?, 'ATTEMPT_UPDATE', ?)",
(task_id, now, None),
)

View File

@ -0,0 +1,15 @@
from __future__ import annotations
import secrets
from datetime import datetime
def new_task_id(workload: str) -> str:
ts = datetime.now().strftime("%Y%m%d-%H%M%S")
suffix = secrets.token_hex(2)
return f"mvp2-{workload}-{ts}-{suffix}"
def attempt_submission_id(task_id: str, attempt_no: int) -> str:
return f"{task_id}--a{attempt_no:02d}"

View File

@ -0,0 +1,37 @@
from __future__ import annotations
from dataclasses import dataclass
import ray
@dataclass(frozen=True)
class ClusterAvailable:
total_available_gpus: float
total_available_npus: float
def get_cluster_available() -> ClusterAvailable:
# Align with verl's fail-fast check which uses ray._private.state.available_resources_per_node().
# This is a best-effort internal API and may change with Ray versions.
try:
import ray._private.state # type: ignore
per_node = ray._private.state.available_resources_per_node()
except Exception:
# If we cannot fetch per-node resources, conservatively return 0.
return ClusterAvailable(total_available_gpus=0.0, total_available_npus=0.0)
total_gpu = 0.0
total_npu = 0.0
for _, info in per_node.items():
if not isinstance(info, dict):
continue
total_gpu += float(info.get("GPU", 0) or 0)
total_npu += float(info.get("NPU", 0) or 0)
return ClusterAvailable(total_available_gpus=total_gpu, total_available_npus=total_npu)
def ensure_ray_connected() -> None:
ray.init(address="auto", ignore_reinit_error=True, log_to_driver=False)

View File

@ -0,0 +1,185 @@
from __future__ import annotations
import re
import time
from dataclasses import dataclass
from datetime import datetime, timedelta
from typing import Any
import yaml
from mvp_v11.models import JobSpec, RayConfig
from mvp_v11.ray_job_tool import RayJobTool
from .config import V2Config
from .db import Db
from .ids import attempt_submission_id
from .ray_resources import ensure_ray_connected, get_cluster_available
_INSUFFICIENT_RE = re.compile(r"Total available GPUs\\s+\\d+\\s+is less than total desired GPUs\\s+\\d+")
def _utc_now_iso() -> str:
return datetime.utcnow().replace(microsecond=0).isoformat() + "Z"
def _utc_after_s(seconds: int) -> str:
return (datetime.utcnow() + timedelta(seconds=seconds)).replace(microsecond=0).isoformat() + "Z"
@dataclass
class Scheduler:
db: Db
ray_cfg: RayConfig
v2_cfg: V2Config
def __post_init__(self) -> None:
self.tool = RayJobTool(self.ray_cfg)
def _resources_sufficient(self, *, nnodes: int, n_gpus_per_node: int) -> bool:
avail = get_cluster_available()
required = float(nnodes * n_gpus_per_node)
return avail.total_available_gpus >= required
def _parse_jobspec(self, jobspec_yaml: str) -> JobSpec:
obj = yaml.safe_load(jobspec_yaml) or {}
if not isinstance(obj, dict):
raise ValueError("jobspec must be a YAML mapping")
return JobSpec.from_dict(obj)
def _submit_one(self, task_row: dict[str, Any]) -> None:
task_id = str(task_row["task_id"])
jobspec_yaml = str(task_row["jobspec_yaml"])
spec = self._parse_jobspec(jobspec_yaml)
attempt_no = int(task_row.get("latest_attempt_no", 0)) + 1
ray_sid = attempt_submission_id(task_id, attempt_no)
# Record attempt first so that we can surface it even if submit crashes.
self.db.create_attempt(task_id=task_id, attempt_no=attempt_no, ray_submission_id=ray_sid)
self.db.set_task_state(task_id=task_id, state="SUBMITTING", latest_attempt_no=attempt_no)
# Override submission_id in jobspec (v1.1 compatible)
d = spec.to_public_dict()
d["submission_id"] = ray_sid
spec2 = JobSpec.from_dict(d)
try:
submitted = self.tool.submit(spec2, no_wait=True)
# submitted should equal ray_sid; keep as source of truth.
self.db.update_attempt(task_id=task_id, attempt_no=attempt_no, ray_status="SUBMITTED")
self.db.set_task_state(task_id=task_id, state="SUBMITTED")
if submitted != ray_sid:
self.db.set_task_state(task_id=task_id, state="SUBMITTED", event_type="WARN_SUBMISSION_ID_MISMATCH")
except Exception as e:
msg = repr(e)
self.db.update_attempt(task_id=task_id, attempt_no=attempt_no, ray_status="FAILED", failure_kind="UNKNOWN", message=msg, end_time=_utc_now_iso())
self.db.set_task_state(task_id=task_id, state="FAILED", error_summary=msg)
def _sync_one_running(self, task_row: dict[str, Any]) -> None:
task_id = str(task_row["task_id"])
latest_attempt_no = int(task_row.get("latest_attempt_no", 0))
if latest_attempt_no <= 0:
return
# Look up ray_submission_id
attempts = self.db.list_attempts(task_id)
if not attempts:
return
ray_sid = str(attempts[-1]["ray_submission_id"])
try:
st = self.tool.status(ray_sid)
except Exception as e:
# Keep current state; transient failures should not flap tasks.
self.db.set_task_state(task_id=task_id, state=str(task_row["state"]), event_type="RAY_STATUS_ERROR", payload_json=repr(e))
return
st_s = str(st)
if st_s in ("PENDING", "RUNNING"):
self.db.update_attempt(task_id=task_id, attempt_no=latest_attempt_no, ray_status=st_s)
self.db.set_task_state(task_id=task_id, state=("RUNNING" if st_s == "RUNNING" else "SUBMITTED"))
return
if st_s in ("SUCCEEDED",):
self.db.update_attempt(task_id=task_id, attempt_no=latest_attempt_no, ray_status=st_s, end_time=_utc_now_iso())
self.db.set_task_state(task_id=task_id, state="SUCCEEDED")
return
if st_s in ("FAILED", "STOPPED"):
logs = ""
try:
logs = self.tool.logs(ray_sid)
except Exception:
logs = ""
failure_kind = "UNKNOWN"
msg = ""
if _INSUFFICIENT_RE.search(logs):
failure_kind = "INSUFFICIENT_RESOURCES"
msg = "Insufficient resources (verl fail-fast): " + (_INSUFFICIENT_RE.search(logs).group(0))
self.db.update_attempt(
task_id=task_id,
attempt_no=latest_attempt_no,
ray_status=st_s,
failure_kind=failure_kind,
message=msg,
end_time=_utc_now_iso(),
)
self.db.set_task_state(
task_id=task_id,
state="PENDING_RESOURCES",
error_summary=msg,
next_run_at=_utc_after_s(self.v2_cfg.scheduler.retry_interval_s),
event_type="RETRY_SCHEDULED",
)
return
msg = f"Ray job {st_s}"
self.db.update_attempt(
task_id=task_id,
attempt_no=latest_attempt_no,
ray_status=st_s,
failure_kind=failure_kind,
message=msg,
end_time=_utc_now_iso(),
)
self.db.set_task_state(task_id=task_id, state="FAILED", error_summary=msg)
def tick(self) -> None:
ensure_ray_connected()
# Sync active tasks
for row in self.db.list_active_tasks(limit=50):
self._sync_one_running(row)
# Submit new tasks if capacity allows
if self.db.count_running() >= self.v2_cfg.scheduler.max_running_tasks:
return
row = self.db.pick_next_runnable_task()
if not row:
return
nnodes = int(row["nnodes"])
n_gpus_per_node = int(row["n_gpus_per_node"])
if not self._resources_sufficient(nnodes=nnodes, n_gpus_per_node=n_gpus_per_node):
self.db.set_task_state(
task_id=str(row["task_id"]),
state="PENDING_RESOURCES",
next_run_at=_utc_after_s(self.v2_cfg.scheduler.retry_interval_s),
event_type="PENDING_RESOURCES",
)
return
self._submit_one(row)
def run_forever(self, stop_flag: Any) -> None:
while not stop_flag.is_set():
try:
self.tick()
except Exception:
# Best-effort: don't crash the scheduler loop
pass
time.sleep(max(1, int(self.v2_cfg.scheduler.tick_s)))

View File

@ -0,0 +1,4 @@
fastapi==0.115.6
uvicorn==0.30.6
PyYAML==6.0.2

33
src/mvp/v2.0/py/server.py Normal file
View File

@ -0,0 +1,33 @@
#!/usr/bin/env python3
from __future__ import annotations
import argparse
import uvicorn
from mvp_v2.app import create_app
from mvp_v2.config import V2Config
def main() -> int:
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True, help="Path to v1.1 RayConfig YAML (extended with v2:)")
args = parser.parse_args()
# Load app and read v2.api host/port from config.
import yaml
with open(args.config, "r", encoding="utf-8") as f:
root = yaml.safe_load(f) or {}
if not isinstance(root, dict):
raise SystemExit("config yaml must be a mapping")
v2 = V2Config.from_root_dict(root)
app = create_app(args.config)
uvicorn.run(app, host=v2.api.host, port=v2.api.port, log_level="info")
return 0
if __name__ == "__main__":
raise SystemExit(main())

View File

@ -0,0 +1,10 @@
#!/usr/bin/env bash
set -euo pipefail
# Install v2.0 API dependencies inside the head container (best-effort).
# Assumes v1.1 containers are already up and v2.0 code is mounted/available.
HEAD_CONTAINER="${HEAD_CONTAINER:-mvp11-ray-head}"
docker exec -i "${HEAD_CONTAINER}" bash -lc "python3 -m pip install -U pip >/dev/null 2>&1 || true"
docker exec -i "${HEAD_CONTAINER}" bash -lc "python3 -m pip install -r /workspace/mvp/v2/py/requirements.txt"

View File

@ -0,0 +1,28 @@
#!/usr/bin/env bash
set -euo pipefail
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
# shellcheck source=lib.sh
source "${SCRIPT_DIR}/lib.sh"
CONFIG_IN_CONTAINER="${CONFIG_IN_CONTAINER:-/workspace/mvp/v1.1/py/configs/dev.yaml}"
LOG_PATH="${LOG_PATH:-/private/common/logs/mvp_v2_api.log}"
PID_PATH="${PID_PATH:-/private/common/run/mvp_v2_api.pid}"
echo "[host] starting mvp v2 api in head container: ${HEAD_CONTAINER}"
dexec bash -lc "mkdir -p \"$(dirname "${LOG_PATH}")\" \"$(dirname "${PID_PATH}")\""
# Note: requires /workspace/mvp/v2.0/py to be present in the container (mounted or copied).
# Escape $ so that the command substitution happens in the container, not on the host.
dexec bash -lc "if test -f '${PID_PATH}'; then pid=\$(cat '${PID_PATH}'); if kill -0 \"\${pid}\" >/dev/null 2>&1; then echo 'already_running'; exit 0; fi; fi"
if [[ -z "${MVP_INTERNAL_TOKEN:-}" ]]; then
echo "ERROR: MVP_INTERNAL_TOKEN env var must be set on host (will be passed into container)" >&2
exit 1
fi
docker exec -d -e MVP_INTERNAL_TOKEN="${MVP_INTERNAL_TOKEN}" "${HEAD_CONTAINER}" bash -lc "nohup python3 /workspace/mvp/v2/py/server.py --config '${CONFIG_IN_CONTAINER}' >>'${LOG_PATH}' 2>&1 & echo \$! >'${PID_PATH}'"
echo "[host] started; pid stored in ${PID_PATH} (container path)"
echo "[host] logs: ${LOG_PATH} (container path)"

View File

@ -0,0 +1,12 @@
#!/usr/bin/env bash
set -euo pipefail
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
# shellcheck source=lib.sh
source "${SCRIPT_DIR}/lib.sh"
PID_PATH="${PID_PATH:-/private/common/run/mvp_v2_api.pid}"
echo "[host] stopping mvp v2 api (pid file: ${PID_PATH})"
dexec bash -lc "if ! test -f '${PID_PATH}'; then echo 'not_running'; exit 0; fi; pid=\"\$(cat '${PID_PATH}')\"; if kill -0 \"\${pid}\" >/dev/null 2>&1; then kill \"\${pid}\"; fi; rm -f '${PID_PATH}'; echo 'stopped'"

View File

@ -0,0 +1,10 @@
#!/usr/bin/env bash
set -euo pipefail
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
# shellcheck source=lib.sh
source "${SCRIPT_DIR}/lib.sh"
PID_PATH="${PID_PATH:-/private/common/run/mvp_v2_api.pid}"
dexec bash -lc "if ! test -f '${PID_PATH}'; then echo 'not_running'; exit 0; fi; pid=\"\$(cat '${PID_PATH}')\"; if kill -0 \"\${pid}\" >/dev/null 2>&1; then echo \"running pid=\${pid}\"; else echo \"stale pid=\${pid}\"; fi"

12
src/mvp/v2.0/scripts/lib.sh Executable file
View File

@ -0,0 +1,12 @@
#!/usr/bin/env bash
set -euo pipefail
# v2.0 scripts are intended to run on the host and control the existing Ray containers
# (same topology as v1.1). Adjust container names via env vars if needed.
HEAD_CONTAINER="${HEAD_CONTAINER:-mvp11-ray-head}"
dexec() {
docker exec -i "${HEAD_CONTAINER}" "$@"
}