v2.0 代码重构,跑通run_all_api.sh
This commit is contained in:
parent
45b6a5f05e
commit
4dacac24f0
301
specs/mvp/refactor/code_refactor.md
Normal file
301
specs/mvp/refactor/code_refactor.md
Normal file
@ -0,0 +1,301 @@
|
||||
# MVP 代码结构重构方案(按功能模块划分)
|
||||
|
||||
背景:当前 `src/mvp/` 下以 `v1.1/`、`v2.0/` 版本目录来组织代码。实际上 **v2.0 是在 v1.1 的 Ray Jobs SDK 提交链路基础上扩展了服务层**,并且为了让 v2.0 工作又对 v1.1 的 `docker-compose.yaml`、`dev.yaml` 做了修改(挂载 v2、开放 8080、增加 `v2:` 配置段)。因此“按版本分目录”会让依赖关系变得不清晰(谁是库、谁是应用、哪些配置是共享的)。
|
||||
|
||||
本方案目标:把 `src/mvp/` 重构为“按功能模块”划分(ray 提交核心库 / service 服务层 / cli 工具 / TaskSpecs / configs / scripts),并给出迁移后的验证与执行方案。
|
||||
|
||||
> 本文仅给出设计与迁移/验证方案,不直接改代码(待确认后再实施)。
|
||||
|
||||
---
|
||||
|
||||
## 1. 现状梳理(问题点)
|
||||
|
||||
### 1.1 代码重复与耦合
|
||||
|
||||
- `src/mvp/v2.0/py/mvp_v11/` 是从 `src/mvp/v1.1/py/mvp_v11/` 复制而来用于复用,但这导致:
|
||||
- **库代码重复**(修 bug 要改两份)
|
||||
- 谁是“权威实现”不明确
|
||||
- v2 API(`mvp_v2`)通过引用复制的 `mvp_v11.RayJobTool` 来提交 Ray Job,本质上依赖 v1.1 提交链路作为“库”。
|
||||
|
||||
### 1.2 配置与部署目录不稳定
|
||||
|
||||
- v2.0 复用了 v1.1 config 文件并新增 `v2:` section,这是合理的“向后兼容扩展”,但它把:
|
||||
- “Ray submit 基础配置”
|
||||
- “API 服务配置”
|
||||
- “部署路径约定(/workspace/mvp/v1.1 vs /workspace/mvp/v2)”
|
||||
混在一个文件里,不利于长期维护。
|
||||
|
||||
### 1.3 命名歧义:jobspec 与 Ray job
|
||||
|
||||
- v1.1/v2.0 都使用 `jobspec.yaml` 指代“训练语义参数”(PPO/GRPO/SFT 的训练字段)。
|
||||
- 但 Ray 也有 “Ray Job” 概念(submission_id、entrypoint、runtime_env 等),易造成沟通误解。
|
||||
- 需要把训练侧 specs 改名为 **TaskSpecs**(代表平台级任务规范),与 Ray Job 区分。
|
||||
|
||||
---
|
||||
|
||||
## 2. 重构目标(What good looks like)
|
||||
|
||||
### 2.1 目录与职责清晰
|
||||
|
||||
- “提交 Ray Job 的 SDK 封装”是一个可复用模块(库)。
|
||||
- “服务层(API + scheduler + SQLite)”是一个独立模块(应用/服务)。
|
||||
- “训练语义参数(TaskSpecs)”与 “Ray Job 提交参数(RayConfig)”分层清楚。
|
||||
|
||||
### 2.2 单一真源(Single Source of Truth)
|
||||
|
||||
- 只能有一份“Ray submitter core”实现(不能复制一份到另一个版本目录)。
|
||||
- API 与 CLI/脚本都复用同一份 core。
|
||||
|
||||
### 2.3 兼容现有运行方式(渐进迁移)
|
||||
|
||||
- 保留现有的脚本式启动/准备流程(Ray 起集群、准备模型/数据仍用 scripts)。
|
||||
- 允许在迁移期提供薄 wrapper 兼容旧路径(减少一次性 break)。
|
||||
|
||||
---
|
||||
|
||||
## 3. 目标结构(按功能模块划分)
|
||||
|
||||
建议把 `src/mvp/` 重构为下面的“功能分层”:
|
||||
|
||||
```
|
||||
src/mvp/
|
||||
py/
|
||||
argus/ # 顶层包(避免与 Ray 的 `ray` 包冲突)
|
||||
__init__.py
|
||||
|
||||
core/ # 通用:yaml/模型定义/工具函数(纯库)
|
||||
__init__.py
|
||||
yaml_io.py
|
||||
ids.py # task_id / attempt_id 生成规则
|
||||
|
||||
ray/ # Ray Job 提交“核心库”(由现成 mvp_v11 迁移而来)
|
||||
__init__.py
|
||||
models.py # RayConfig, TaskSpec(解析), Attempt, enums
|
||||
builders.py # build_training_argv (ppo/grpo/sft)
|
||||
driver_entrypoint.py # 仍然作为 Ray job entrypoint(worker 上执行)
|
||||
ray_job_tool.py # Ray Jobs SDK 封装(submit/status/stop/logs)
|
||||
runtime_env.py # 统一 PYTHONPATH/runtime_env 组装逻辑
|
||||
|
||||
service/ # 服务层:FastAPI + scheduler + sqlite(应用)
|
||||
__init__.py
|
||||
app.py
|
||||
scheduler.py
|
||||
db.py
|
||||
config.py # service 相关配置读取(从 configs 读取)
|
||||
ray_resources.py
|
||||
|
||||
cli/ # 命令行/SDK 提交入口(由现成 v1.1 run.py 迁移而来)
|
||||
__init__.py
|
||||
run.py # submit/status/logs/stop 等 action
|
||||
|
||||
server.py # uvicorn 入口(导入 argus.service.*)
|
||||
|
||||
configs/
|
||||
dev.yaml # RayConfig + ServiceConfig(按层次组织、可扩展)
|
||||
prod.yaml # (可选)生产配置模板
|
||||
|
||||
taskspecs/ # 原 jobspecs/,改名 TaskSpecs(训练语义规范)
|
||||
ppo.yaml
|
||||
grpo.yaml
|
||||
sft.yaml
|
||||
README.md # TaskSpec 字段解释、示例
|
||||
|
||||
scripts/ # 宿主机脚本(docker exec/compose 编排)
|
||||
lib.sh
|
||||
00_prereq_check.sh
|
||||
01_up.sh / 02_down.sh
|
||||
20_start_head.sh / 21_start_workers.sh
|
||||
30_prepare_data_and_model.sh
|
||||
40_submit_cli.sh # 通过 cli/run.py 提交 TaskSpec
|
||||
60_start_api.sh # 启动 API(service)
|
||||
61_stop_api.sh
|
||||
62_status_api.sh
|
||||
|
||||
docker-compose.yaml # dev 环境 compose(从 v1.1 迁移到这里,路径稳定)
|
||||
README.md # 总入口文档(运行方式、目录约定)
|
||||
```
|
||||
|
||||
### 3.1 关键点:库 vs 应用边界
|
||||
|
||||
- `argus.ray` 是唯一的 Ray submitter 库(替代当前 v1.1/v2.0 的 `mvp_v11` 双份拷贝)。
|
||||
- `argus.service` 依赖 `argus.ray`,不反向依赖。
|
||||
- `argus.cli` 依赖 `argus.ray`,用于脚本化提交/调试。
|
||||
|
||||
### 3.2 TaskSpecs vs RayConfig
|
||||
|
||||
- `taskspecs/*.yaml`:描述训练任务语义参数(workload、nnodes、n_gpus_per_node、数据/模型路径、训练步数等)。
|
||||
- `configs/*.yaml`:描述 Ray 提交环境(address、entrypoint_resources、runtime_env 以及 service 配置)。
|
||||
|
||||
---
|
||||
|
||||
## 4. 配置策略(重构后如何组织 configs)
|
||||
|
||||
### 4.1 建议的 config 分层
|
||||
|
||||
把当前 `dev.yaml` 的内容明确分为两段(按模块名分段):
|
||||
|
||||
1) `ray:`(RayConfig)
|
||||
- job server address
|
||||
- shared_root(`/private`)
|
||||
- entrypoint resources(强制 driver 落 worker)
|
||||
- runtime_env env_vars(HF cache、PYTHONPATH 注入策略)
|
||||
|
||||
2) `service:`(ServiceConfig)
|
||||
- api host/port
|
||||
- auth token_env
|
||||
- sqlite db_path
|
||||
- scheduler tick/max_running/retry_interval
|
||||
|
||||
示例(结构示意):
|
||||
|
||||
```yaml
|
||||
ray:
|
||||
address: "http://127.0.0.1:8265"
|
||||
shared_root: "/private"
|
||||
entrypoint_num_cpus: 1
|
||||
entrypoint_resources:
|
||||
worker_node: 1
|
||||
runtime_env:
|
||||
env_vars:
|
||||
HF_ENDPOINT: "https://hf-mirror.com"
|
||||
PYTHONUNBUFFERED: "1"
|
||||
user_code_path: "/private/user/code"
|
||||
|
||||
service:
|
||||
api:
|
||||
host: "0.0.0.0"
|
||||
port: 8080
|
||||
auth:
|
||||
token_env: "MVP_INTERNAL_TOKEN"
|
||||
sqlite:
|
||||
db_path: "/private/common/db/mvp.sqlite3"
|
||||
scheduler:
|
||||
tick_s: 5
|
||||
retry_interval_s: 60
|
||||
max_running_tasks: 1
|
||||
```
|
||||
|
||||
> 迁移期可以支持“旧格式”(v1.1 顶层字段 + v2: 段)与“新格式”(ray:/service: 两段)并存:解析时兼容读取,降低一次性改动风险;但最终以新格式为准。
|
||||
|
||||
---
|
||||
|
||||
## 5. 迁移路径(推荐分两阶段实施)
|
||||
|
||||
### 阶段 A:先拷贝/迁移现成文件,再做最小调整(保持行为不变)
|
||||
|
||||
目标:不改功能、不改 API 行为。优先通过“拷贝/迁移现成文件 + 修正包引用/路径”完成重构,避免重头重写逻辑(降低出错概率)。
|
||||
|
||||
建议步骤:
|
||||
|
||||
1) 抽出 `src/mvp/py/argus/ray/`(由现成代码迁移)
|
||||
- 将 `src/mvp/v1.1/py/mvp_v11/` 迁移到 `src/mvp/py/argus/ray/`,并把它作为 submitter core 的唯一真源(不再保留一份复制品在其它目录)。
|
||||
- 只做机械化调整:修正 import、修正默认路径常量(例如 tool code path / working dir)、修正 scripts 的调用路径。
|
||||
|
||||
2) 抽出 `src/mvp/py/argus/service/`(由现成代码迁移)
|
||||
- 将 `src/mvp/v2.0/py/mvp_v2/` 迁移到 `src/mvp/py/argus/service/`。
|
||||
- service 侧对 submitter 的依赖统一改为 `src/mvp/py/argus/ray/`(不再引用 `src/mvp/v2.0/py/mvp_v11/` 的复制品)。
|
||||
|
||||
3) CLI 统一入口:`src/mvp/py/argus/cli/run.py`(由现成代码迁移)
|
||||
- 将 `src/mvp/v1.1/py/run.py` 迁移到 `src/mvp/py/argus/cli/run.py`,保留 action 语义(submit/status/logs/stop)。
|
||||
- 仅调整 import 与默认路径,使其指向新目录(configs/taskspecs/py)。
|
||||
|
||||
4) scripts 合并(以 v1.1 为基、合入 v2 API)
|
||||
- 将 `src/mvp/v1.1/scripts/` 迁移到 `src/mvp/scripts/`(Ray 集群编排最成熟)。
|
||||
- 将 `src/mvp/v2.0/scripts/` 的 API 启停脚本合入 `src/mvp/scripts/`,并统一命名与默认路径。
|
||||
|
||||
5) docker-compose / mounts 稳定化(你已确认要迁移)
|
||||
- 将 `src/mvp/v1.1/docker-compose.yaml` 迁移为 `src/mvp/docker-compose.yaml`。
|
||||
- 容器内挂载统一:宿主机 `.../src/mvp/` → 容器 `/workspace/mvp/`(包含 `py/ configs/ taskspecs/ scripts/`)。
|
||||
- runtime_env 的 `PYTHONPATH` 注入统一指向 `/workspace/mvp/py`(不再出现 `/workspace/mvp/v1.1/py`、`/workspace/mvp/v2/...`)。
|
||||
|
||||
阶段 A 完成标准:
|
||||
- 原来 v1.1 的 CLI 提交方式仍可用(提交 PPO/GRPO/SFT)。
|
||||
- v2 API 仍可用(队列、取消、日志)。
|
||||
- 不再存在 `mvp_v11` 的重复目录。
|
||||
|
||||
### 阶段 B:配置格式升级(按模块两段)+ TaskSpecs 更名落地
|
||||
|
||||
目标:把 jobspec 真正改名为 TaskSpec,并把 config 升级为按模块两段(`ray:`/`service:`)清晰分层。
|
||||
|
||||
建议步骤:
|
||||
- `jobspecs/` → `taskspecs/`,并更新 README/脚本引用。
|
||||
- `dev.yaml` 从“顶层字段 + v2:”迁移为“ray:/service:”两段。
|
||||
- 保留一段时间的兼容解析逻辑(读取旧格式时发出 warning)。
|
||||
- 完成验证后删除旧版本目录:`src/mvp/v1.1/`、`src/mvp/v2.0/`(以及远端对应目录),确保新结构成为唯一入口。
|
||||
|
||||
阶段 B 完成标准:
|
||||
- docs 里不再出现 “jobspec” 词汇,统一称 “TaskSpec”。
|
||||
- `configs/dev.yaml` 分层清晰(`ray:`/`service:` 两段按模块名),服务与 Ray 的配置互不干扰。
|
||||
|
||||
---
|
||||
|
||||
## 6. 重构后的验证与执行方案(验收/回归)
|
||||
|
||||
### 6.1 本地(仓库内)静态验证
|
||||
|
||||
1) import / 入口检查(在容器环境)
|
||||
- `python3 -c "from argus.ray.ray_job_tool import RayJobTool"`
|
||||
- `python3 -c "from argus.service.app import create_app"`
|
||||
|
||||
2) 目录结构检查
|
||||
- 确保 `src/mvp/py` 是唯一 python 代码根
|
||||
- 确保 `taskspecs/`、`configs/`、`scripts/` 都在 `src/mvp/` 下
|
||||
|
||||
### 6.2 dev 环境(argus@h1)端到端验证
|
||||
|
||||
前置:
|
||||
- 远端目录:`argus@h1:/home2/argus/infra/mvp/`(维持不变)
|
||||
- 共享目录:`/home2/argus/infra/mvp/shared` 挂载到容器 `/private`
|
||||
|
||||
验证步骤(推荐顺序):
|
||||
|
||||
1) 重新拉起容器 + 启动 Ray
|
||||
- `scripts/01_up.sh`
|
||||
- `scripts/20_start_head.sh`(head `--num-cpus=0 --num-gpus=0`)
|
||||
- `scripts/21_start_workers.sh`(workers 带 `worker_node` 资源)
|
||||
- `ray status` / `ray list nodes` 确认 head 无 GPU、workers 各 4 GPU
|
||||
|
||||
2) CLI 提交回归(等价 v1.1)
|
||||
- 提交 `taskspecs/sft.yaml`,确认成功
|
||||
- 提交 `taskspecs/grpo.yaml`,确认成功
|
||||
- 提交 `taskspecs/ppo.yaml`,确认成功
|
||||
|
||||
3) API 服务回归(等价 v2.0)
|
||||
- `scripts/60_start_api.sh`
|
||||
- `POST /api/v2/tasks`(raw YAML TaskSpec)
|
||||
- `GET /api/v2/tasks/{task_id}`:确认返回 `created_at/updated_at`
|
||||
- `POST /api/v2/tasks/{task_id}:cancel`:确认任务 `state=CANCELED` 且 attempt `ray_status=STOPPED`(服务侧语义一致)
|
||||
|
||||
4) 队列行为回归
|
||||
- 在 `service.scheduler.max_running_tasks=1` 下:
|
||||
- 连续提交两个 8-GPU 任务:第二个应保持 `QUEUED/PENDING_RESOURCES`,直到第一个结束后自动提交。
|
||||
|
||||
验收标准:
|
||||
- 三种 workload(PPO/GRPO/SFT)都能通过 CLI 跑通(或至少能正确提交到 Ray 并进入 RUNNING)。
|
||||
- API 提交/查询/取消/日志正常。
|
||||
- “cancel 后 state=CANCELED 但 attempt 仍 RUNNING”的不一致问题不再出现。
|
||||
|
||||
---
|
||||
|
||||
## 7. 风险与注意事项
|
||||
|
||||
1) PYTHONPATH 注入路径变化
|
||||
- 当前 runtime_env 里有 `MVP_TOOL_CODE_PATH=/workspace/mvp/v1.1/py` 的历史路径假设;
|
||||
- 重构后需统一为 `/workspace/mvp/py`,并确保所有容器都挂载到相同路径。
|
||||
|
||||
2) SQLite WAL 在 NFS 上的稳定性
|
||||
- 目前 db 使用 WAL(生成 `-wal/-shm`),NFS 下可能有一致性风险;
|
||||
- 可作为后续优化:检测 NFS 时退回 `journal_mode=DELETE` 或换成单机本地盘。
|
||||
|
||||
3) 渐进迁移的兼容期
|
||||
- 迁移期可以短暂保留旧路径(例如 `src/mvp/v1.1`、`src/mvp/v2.0` 仅保留 README 指向新路径)以减少一次性断裂;但你已确认最终会删除这两个目录,因此需要在 scripts/文档同步更新后尽快清理。
|
||||
|
||||
---
|
||||
|
||||
## 8. 已确认约束(将按此实施)
|
||||
|
||||
你已明确:
|
||||
|
||||
1) `docker-compose.yaml` 必须迁移到 `src/mvp/` 根;重构完成后 `src/mvp/v1.1`、`src/mvp/v2.0` 都会删除。
|
||||
2) `configs/dev.yaml` 升级为两段,按模块名分段:`ray:` 与 `service:`;并保持纯 YAML 风格(不混用 JSON inline map)。
|
||||
3) TaskSpec 字段先保持与现有 v1.1 YAML 完全一致(仅目录与命名变化),避免引入不必要的不兼容。
|
||||
17
src/mvp/README.md
Normal file
17
src/mvp/README.md
Normal file
@ -0,0 +1,17 @@
|
||||
# MVP(模块化结构)
|
||||
|
||||
本目录是 MVP 的“按功能模块”组织后的最终入口(替代原 `v1.1/`、`v2.0/` 版本目录)。
|
||||
|
||||
目录:
|
||||
- `py/`:Python 代码(`argus.*` 包)
|
||||
- `argus.ray`:Ray Jobs SDK submitter core(提交/查询/停止/日志)
|
||||
- `argus.service`:API + scheduler + SQLite(服务层队列/重试/状态聚合)
|
||||
- `argus.cli`:CLI 工具(用于脚本化提交/调试)
|
||||
- `configs/`:配置(`ray:` 与 `service:` 两段,纯 YAML 风格)
|
||||
- `taskspecs/`:TaskSpec(训练任务语义参数)
|
||||
- `scripts/`:宿主机脚本(docker compose/exec 编排)
|
||||
- `docker-compose.yaml`:dev 环境容器定义(head+workers)
|
||||
|
||||
快速开始:
|
||||
- CLI 提交流程:`scripts/run_all_cli.sh`
|
||||
- API 提交流程:`scripts/run_all_api.sh`
|
||||
34
src/mvp/configs/dev.yaml
Normal file
34
src/mvp/configs/dev.yaml
Normal file
@ -0,0 +1,34 @@
|
||||
ray:
|
||||
# Ray Job server address (head 容器内视角)
|
||||
address: "http://127.0.0.1:8265"
|
||||
|
||||
# 共享根路径(容器内统一 /private,对齐生产)
|
||||
shared_root: "/private"
|
||||
|
||||
# 强制 driver 落 worker(head 不跑训练)
|
||||
entrypoint_num_cpus: 1
|
||||
entrypoint_resources:
|
||||
worker_node: 1
|
||||
|
||||
# 所有 job 通用 runtime env
|
||||
runtime_env:
|
||||
env_vars:
|
||||
HF_ENDPOINT: "https://hf-mirror.com"
|
||||
PYTHONUNBUFFERED: "1"
|
||||
|
||||
# 用户自定义代码目录(可被 PYTHONPATH 注入)
|
||||
user_code_path: "/private/user/code"
|
||||
|
||||
service:
|
||||
api:
|
||||
host: "0.0.0.0"
|
||||
port: 8080
|
||||
auth:
|
||||
token_env: "MVP_INTERNAL_TOKEN"
|
||||
sqlite:
|
||||
db_path: "/private/common/db/mvp.sqlite3"
|
||||
scheduler:
|
||||
tick_s: 5
|
||||
retry_interval_s: 60
|
||||
max_running_tasks: 1
|
||||
|
||||
@ -3,16 +3,18 @@ version: "3.8"
|
||||
services:
|
||||
ray_head:
|
||||
image: verlai/verl:sgl055.latest
|
||||
container_name: mvp11-ray-head
|
||||
container_name: argus-ray-head
|
||||
command: sleep infinity
|
||||
ports:
|
||||
- "8265:8265"
|
||||
- "8080:8080"
|
||||
volumes:
|
||||
- ../verl:/workspace/verl
|
||||
- ../shared:/private
|
||||
- .:/workspace/mvp/v1.1
|
||||
- ../v2:/workspace/mvp/v2
|
||||
# NOTE: this compose file is intended for the dev env layout like:
|
||||
# /home2/argus/infra/mvp/{shared,verl,src/mvp}
|
||||
# so from `src/mvp/` the shared/verl dirs are `../../shared` and `../../verl`.
|
||||
- ../../verl:/workspace/verl
|
||||
- ../../shared:/private
|
||||
- .:/workspace/mvp
|
||||
shm_size: "10g"
|
||||
ulimits:
|
||||
nofile:
|
||||
@ -22,7 +24,7 @@ services:
|
||||
- SYS_ADMIN
|
||||
- SYS_PTRACE
|
||||
networks:
|
||||
- mvp11-ray-net
|
||||
- argus-ray-net
|
||||
environment:
|
||||
HF_HOME: "/private/hf"
|
||||
HUGGINGFACE_HUB_CACHE: "/private/hf/hub"
|
||||
@ -32,12 +34,12 @@ services:
|
||||
|
||||
ray_worker_0:
|
||||
image: verlai/verl:sgl055.latest
|
||||
container_name: mvp11-ray-worker-0
|
||||
container_name: argus-ray-worker-0
|
||||
command: sleep infinity
|
||||
volumes:
|
||||
- ../verl:/workspace/verl
|
||||
- ../shared:/private
|
||||
- .:/workspace/mvp/v1.1
|
||||
- ../../verl:/workspace/verl
|
||||
- ../../shared:/private
|
||||
- .:/workspace/mvp
|
||||
shm_size: "10g"
|
||||
ulimits:
|
||||
nofile:
|
||||
@ -47,7 +49,7 @@ services:
|
||||
- SYS_ADMIN
|
||||
- SYS_PTRACE
|
||||
networks:
|
||||
- mvp11-ray-net
|
||||
- argus-ray-net
|
||||
runtime: nvidia
|
||||
environment:
|
||||
NVIDIA_VISIBLE_DEVICES: "0,1,2,3"
|
||||
@ -60,12 +62,12 @@ services:
|
||||
|
||||
ray_worker_1:
|
||||
image: verlai/verl:sgl055.latest
|
||||
container_name: mvp11-ray-worker-1
|
||||
container_name: argus-ray-worker-1
|
||||
command: sleep infinity
|
||||
volumes:
|
||||
- ../verl:/workspace/verl
|
||||
- ../shared:/private
|
||||
- .:/workspace/mvp/v1.1
|
||||
- ../../verl:/workspace/verl
|
||||
- ../../shared:/private
|
||||
- .:/workspace/mvp
|
||||
shm_size: "10g"
|
||||
ulimits:
|
||||
nofile:
|
||||
@ -75,7 +77,7 @@ services:
|
||||
- SYS_ADMIN
|
||||
- SYS_PTRACE
|
||||
networks:
|
||||
- mvp11-ray-net
|
||||
- argus-ray-net
|
||||
runtime: nvidia
|
||||
environment:
|
||||
NVIDIA_VISIBLE_DEVICES: "4,5,6,7"
|
||||
@ -87,5 +89,5 @@ services:
|
||||
PYTHONUNBUFFERED: "1"
|
||||
|
||||
networks:
|
||||
mvp11-ray-net:
|
||||
argus-ray-net:
|
||||
driver: bridge
|
||||
2
src/mvp/py/argus/cli/__init__.py
Normal file
2
src/mvp/py/argus/cli/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
__all__ = []
|
||||
|
||||
@ -8,22 +8,25 @@ import sys
|
||||
|
||||
|
||||
def _ensure_import_path() -> None:
|
||||
# Allow `python3 /workspace/.../py/run.py` to import `mvp_v11.*`
|
||||
# Allow running as a file path (not just `python3 -m argus.cli.run`).
|
||||
# Ensure `/workspace/mvp/py` is on sys.path so `import argus.*` works.
|
||||
here = os.path.dirname(os.path.abspath(__file__))
|
||||
if here not in sys.path:
|
||||
sys.path.insert(0, here)
|
||||
py_root = os.path.dirname(os.path.dirname(here)) # .../py
|
||||
if py_root not in sys.path:
|
||||
sys.path.insert(0, py_root)
|
||||
|
||||
|
||||
def main() -> int:
|
||||
_ensure_import_path()
|
||||
|
||||
from mvp_v11.models import JobSpec, RayConfig
|
||||
from mvp_v11.ray_job_tool import RayJobTool
|
||||
from mvp_v11.yaml_io import load_yaml
|
||||
from argus.ray.models import JobSpec, RayConfig
|
||||
from argus.ray.ray_job_tool import RayJobTool
|
||||
from argus.ray.yaml_io import load_yaml
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--config", required=True, help="Ray base config yaml")
|
||||
parser.add_argument("--jobspec", help="Training jobspec yaml (required for submit)")
|
||||
parser.add_argument("--config", required=True, help="MVP config yaml (ray/service)")
|
||||
parser.add_argument("--taskspec", help="Training TaskSpec yaml (required for submit)")
|
||||
parser.add_argument("--jobspec", dest="taskspec", help=argparse.SUPPRESS) # backward compatible alias
|
||||
parser.add_argument("--action", required=True, choices=["submit", "status", "stop", "logs", "list"])
|
||||
parser.add_argument("--submission-id", help="For status/stop/logs")
|
||||
parser.add_argument("--no-wait", action="store_true", help="Submit and return immediately")
|
||||
@ -34,9 +37,9 @@ def main() -> int:
|
||||
tool = RayJobTool(cfg)
|
||||
|
||||
if args.action == "submit":
|
||||
if not args.jobspec:
|
||||
raise SystemExit("--jobspec is required for submit")
|
||||
spec = JobSpec.from_dict(load_yaml(args.jobspec))
|
||||
if not args.taskspec:
|
||||
raise SystemExit("--taskspec is required for submit")
|
||||
spec = JobSpec.from_dict(load_yaml(args.taskspec))
|
||||
submitted = tool.submit(spec, no_wait=args.no_wait)
|
||||
print(submitted)
|
||||
return 0
|
||||
2
src/mvp/py/argus/core/__init__.py
Normal file
2
src/mvp/py/argus/core/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
__all__ = []
|
||||
|
||||
@ -21,6 +21,11 @@ class RayConfig:
|
||||
|
||||
@staticmethod
|
||||
def from_dict(d: dict[str, Any]) -> "RayConfig":
|
||||
# New format: root.ray
|
||||
# Backward compatible: root (flat)
|
||||
if isinstance(d.get("ray"), dict):
|
||||
d = d["ray"] # type: ignore[assignment]
|
||||
|
||||
runtime_env = d.get("runtime_env") or {}
|
||||
env_vars = (runtime_env.get("env_vars") or {}) if isinstance(runtime_env, dict) else {}
|
||||
if not isinstance(env_vars, dict):
|
||||
@ -53,9 +53,9 @@ class RayJobTool:
|
||||
env_vars.setdefault("TRANSFORMERS_CACHE", f"{self.cfg.shared_root}/hf/transformers")
|
||||
env_vars.setdefault("PYTHONUNBUFFERED", "1")
|
||||
|
||||
# Tool code path must be importable on workers (compose mounts v1.1 into all containers).
|
||||
# Tool code path must be importable on workers (compose mounts `/workspace/mvp` into all containers).
|
||||
# Place it before verl code to avoid interfering with verl import priority.
|
||||
tool_code_path = os.environ.get("MVP_TOOL_CODE_PATH", "/workspace/mvp/v1.1/py")
|
||||
tool_code_path = os.environ.get("MVP_TOOL_CODE_PATH", "/workspace/mvp/py")
|
||||
|
||||
user_code_path = self.cfg.user_code_path
|
||||
code_path = spec.code_path
|
||||
@ -81,7 +81,7 @@ class RayJobTool:
|
||||
entrypoint_argv = [
|
||||
"python3",
|
||||
"-m",
|
||||
"mvp_v11.driver_entrypoint",
|
||||
"argus.ray.driver_entrypoint",
|
||||
"--job-dir",
|
||||
job_dir,
|
||||
*built.argv,
|
||||
2
src/mvp/py/argus/service/__init__.py
Normal file
2
src/mvp/py/argus/service/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
__all__ = []
|
||||
|
||||
@ -7,11 +7,11 @@ from typing import Any
|
||||
import yaml
|
||||
from fastapi import FastAPI, HTTPException, Request, Response
|
||||
|
||||
from mvp_v11.models import JobSpec, RayConfig
|
||||
from argus.core.ids import new_task_id
|
||||
from argus.ray.models import JobSpec, RayConfig
|
||||
|
||||
from .config import V2Config
|
||||
from .db import Db
|
||||
from .ids import new_task_id
|
||||
from .scheduler import Scheduler
|
||||
|
||||
|
||||
@ -36,20 +36,29 @@ class V2Config:
|
||||
|
||||
@staticmethod
|
||||
def from_root_dict(root: dict[str, Any]) -> "V2Config":
|
||||
v2 = root.get("v2") or {}
|
||||
if not isinstance(v2, dict):
|
||||
raise ValueError("config.v2 must be a mapping")
|
||||
# New format: root.service
|
||||
# Backward compatible: root.v2
|
||||
service = root.get("service")
|
||||
if service is None:
|
||||
service = root.get("v2") or {}
|
||||
if not isinstance(service, dict):
|
||||
raise ValueError("config.service must be a mapping")
|
||||
|
||||
api = v2.get("api") or {}
|
||||
auth = v2.get("auth") or {}
|
||||
sqlite = v2.get("sqlite") or {}
|
||||
scheduler = v2.get("scheduler") or {}
|
||||
api = service.get("api") or {}
|
||||
auth = service.get("auth") or {}
|
||||
sqlite = service.get("sqlite") or {}
|
||||
scheduler = service.get("scheduler") or {}
|
||||
|
||||
if not isinstance(api, dict) or not isinstance(auth, dict) or not isinstance(sqlite, dict) or not isinstance(scheduler, dict):
|
||||
raise ValueError("config.v2.{api,auth,sqlite,scheduler} must be mappings")
|
||||
raise ValueError("config.service.{api,auth,sqlite,scheduler} must be mappings")
|
||||
|
||||
shared_root = str(root.get("shared_root") or "/private")
|
||||
default_db_path = f"{shared_root}/common/db/mvp_v2.sqlite3"
|
||||
ray = root.get("ray")
|
||||
if isinstance(ray, dict) and ray.get("shared_root"):
|
||||
shared_root = str(ray.get("shared_root"))
|
||||
else:
|
||||
shared_root = str(root.get("shared_root") or "/private")
|
||||
|
||||
default_db_path = f"{shared_root}/common/db/mvp.sqlite3"
|
||||
db_path = str(sqlite.get("db_path") or default_db_path)
|
||||
|
||||
return V2Config(
|
||||
@ -65,4 +74,3 @@ class V2Config:
|
||||
max_running_tasks=int(scheduler.get("max_running_tasks") or 1),
|
||||
),
|
||||
)
|
||||
|
||||
@ -8,12 +8,12 @@ from typing import Any
|
||||
|
||||
import yaml
|
||||
|
||||
from mvp_v11.models import JobSpec, RayConfig
|
||||
from mvp_v11.ray_job_tool import RayJobTool
|
||||
from argus.core.ids import attempt_submission_id
|
||||
from argus.ray.models import JobSpec, RayConfig
|
||||
from argus.ray.ray_job_tool import RayJobTool
|
||||
|
||||
from .config import V2Config
|
||||
from .db import Db
|
||||
from .ids import attempt_submission_id
|
||||
from .ray_resources import ensure_ray_connected, get_cluster_available
|
||||
|
||||
|
||||
@ -5,13 +5,13 @@ import argparse
|
||||
|
||||
import uvicorn
|
||||
|
||||
from mvp_v2.app import create_app
|
||||
from mvp_v2.config import V2Config
|
||||
from argus.service.app import create_app
|
||||
from argus.service.config import V2Config
|
||||
|
||||
|
||||
def main() -> int:
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--config", required=True, help="Path to v1.1 RayConfig YAML (extended with v2:)")
|
||||
parser.add_argument("--config", required=True, help="Path to MVP config YAML (ray:/service:)")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load app and read v2.api host/port from config.
|
||||
@ -30,4 +30,3 @@ def main() -> int:
|
||||
|
||||
if __name__ == "__main__":
|
||||
raise SystemExit(main())
|
||||
|
||||
15
src/mvp/v1.1/scripts/00_prereq_check.sh → src/mvp/scripts/00_prereq_check.sh
Normal file → Executable file
15
src/mvp/v1.1/scripts/00_prereq_check.sh → src/mvp/scripts/00_prereq_check.sh
Normal file → Executable file
@ -27,16 +27,15 @@ else
|
||||
nvidia-smi -L || true
|
||||
fi
|
||||
|
||||
echo "[host] ensure shared dirs exist under ../shared"
|
||||
mkdir -p "${ROOT_DIR}/../shared"/{datasets,hf,jobs,outputs,ray,common,user}
|
||||
mkdir -p "${ROOT_DIR}/../shared/common"/{code,datasets,models}
|
||||
mkdir -p "${ROOT_DIR}/../shared/user"/{code}
|
||||
echo "[host] ensure shared dirs exist under ../../shared"
|
||||
mkdir -p "${ROOT_DIR}/../../shared"/{datasets,hf,jobs,outputs,ray,common,user}
|
||||
mkdir -p "${ROOT_DIR}/../../shared/common"/{code,datasets,models}
|
||||
mkdir -p "${ROOT_DIR}/../../shared/user"/{code}
|
||||
|
||||
echo "[host] ensure verl repo exists under ../verl (required by prepare scripts)"
|
||||
if [[ ! -d "${ROOT_DIR}/../verl" ]]; then
|
||||
echo "missing ../verl. On remote, ensure /home2/argus/infra/mvp/verl exists (git clone volcengine/verl)." >&2
|
||||
echo "[host] ensure verl repo exists under ../../verl (required by prepare scripts)"
|
||||
if [[ ! -d "${ROOT_DIR}/../../verl" ]]; then
|
||||
echo "missing ../../verl. On remote, ensure /home2/argus/infra/mvp/verl exists (git clone volcengine/verl)." >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "ok"
|
||||
|
||||
4
src/mvp/v1.1/scripts/01_up.sh → src/mvp/scripts/01_up.sh
Normal file → Executable file
4
src/mvp/v1.1/scripts/01_up.sh → src/mvp/scripts/01_up.sh
Normal file → Executable file
@ -9,8 +9,8 @@ if [[ "${SKIP_CLEANUP_V1:-0}" != "1" ]]; then
|
||||
"${SCRIPT_DIR}/03_cleanup_v1_legacy.sh" || true
|
||||
fi
|
||||
|
||||
echo "[host] docker compose up -d (v1.1)"
|
||||
echo "[host] docker compose up -d (mvp)"
|
||||
dc up -d
|
||||
|
||||
echo "[host] containers:"
|
||||
docker ps --format 'table {{.Names}}\t{{.Status}}\t{{.Ports}}' | (head -n 1 && grep -E "mvp11-ray-") || true
|
||||
docker ps --format 'table {{.Names}}\t{{.Status}}\t{{.Ports}}' | (head -n 1 && grep -E "argus-ray-") || true
|
||||
3
src/mvp/v1.1/scripts/02_down.sh → src/mvp/scripts/02_down.sh
Normal file → Executable file
3
src/mvp/v1.1/scripts/02_down.sh → src/mvp/scripts/02_down.sh
Normal file → Executable file
@ -5,8 +5,7 @@ SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
echo "[host] docker compose down (v1.1)"
|
||||
echo "[host] docker compose down (mvp)"
|
||||
dc down -v || true
|
||||
|
||||
echo "[host] done"
|
||||
|
||||
0
src/mvp/v1.1/scripts/03_cleanup_v1_legacy.sh → src/mvp/scripts/03_cleanup_v1_legacy.sh
Normal file → Executable file
0
src/mvp/v1.1/scripts/03_cleanup_v1_legacy.sh → src/mvp/scripts/03_cleanup_v1_legacy.sh
Normal file → Executable file
3
src/mvp/v1.1/scripts/05_ensure_verl_repo.sh → src/mvp/scripts/05_ensure_verl_repo.sh
Normal file → Executable file
3
src/mvp/v1.1/scripts/05_ensure_verl_repo.sh → src/mvp/scripts/05_ensure_verl_repo.sh
Normal file → Executable file
@ -5,7 +5,7 @@ SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
VERL_DIR="${ROOT_DIR}/../verl"
|
||||
VERL_DIR="${ROOT_DIR}/../../verl"
|
||||
|
||||
echo "[host] ensure verl repo exists at: ${VERL_DIR}"
|
||||
if [[ -d "${VERL_DIR}/.git" ]]; then
|
||||
@ -20,4 +20,3 @@ fi
|
||||
|
||||
echo "cloning volcengine/verl -> ${VERL_DIR}"
|
||||
git clone https://github.com/volcengine/verl.git "${VERL_DIR}"
|
||||
|
||||
12
src/mvp/scripts/12_install_api_deps.sh
Executable file
12
src/mvp/scripts/12_install_api_deps.sh
Executable file
@ -0,0 +1,12 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
# Install API/CLI dependencies inside the head container (best-effort).
|
||||
# Assumes containers are already up and `/workspace/mvp/` is mounted.
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "python3 -m pip install -U pip >/dev/null 2>&1 || true"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "python3 -m pip install -r /workspace/mvp/py/requirements.txt"
|
||||
9
src/mvp/scripts/12_install_py_deps.sh
Executable file
9
src/mvp/scripts/12_install_py_deps.sh
Executable file
@ -0,0 +1,9 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
echo "[head] install python deps for CLI/API"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "python3 -m pip install -r /workspace/mvp/py/requirements.txt"
|
||||
0
src/mvp/v1.1/scripts/20_start_head.sh → src/mvp/scripts/20_start_head.sh
Normal file → Executable file
0
src/mvp/v1.1/scripts/20_start_head.sh → src/mvp/scripts/20_start_head.sh
Normal file → Executable file
0
src/mvp/v1.1/scripts/21_start_workers.sh → src/mvp/scripts/21_start_workers.sh
Normal file → Executable file
0
src/mvp/v1.1/scripts/21_start_workers.sh → src/mvp/scripts/21_start_workers.sh
Normal file → Executable file
0
src/mvp/v1.1/scripts/30_prepare_data_and_model.sh → src/mvp/scripts/30_prepare_data_and_model.sh
Normal file → Executable file
0
src/mvp/v1.1/scripts/30_prepare_data_and_model.sh → src/mvp/scripts/30_prepare_data_and_model.sh
Normal file → Executable file
0
src/mvp/v1.1/scripts/31_snapshot_verl_code.sh → src/mvp/scripts/31_snapshot_verl_code.sh
Normal file → Executable file
0
src/mvp/v1.1/scripts/31_snapshot_verl_code.sh → src/mvp/scripts/31_snapshot_verl_code.sh
Normal file → Executable file
18
src/mvp/scripts/44_submit_sdk.sh
Executable file
18
src/mvp/scripts/44_submit_sdk.sh
Executable file
@ -0,0 +1,18 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
CONFIG_PATH="${1:-/workspace/mvp/configs/dev.yaml}"
|
||||
TASKSPEC_PATH="${2:-}"
|
||||
|
||||
if [[ -z "${TASKSPEC_PATH}" ]]; then
|
||||
echo "usage: $0 <config_yaml_in_container> <taskspec_yaml_in_container>" >&2
|
||||
echo "example: $0 /workspace/mvp/configs/dev.yaml /workspace/mvp/taskspecs/ppo.yaml" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "[head] submit via Ray Python SDK"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "cd /workspace/mvp/py && python3 -m argus.cli.run --config '${CONFIG_PATH}' --taskspec '${TASKSPEC_PATH}' --action submit --no-wait"
|
||||
0
src/mvp/v1.1/scripts/50_status.sh → src/mvp/scripts/50_status.sh
Normal file → Executable file
0
src/mvp/v1.1/scripts/50_status.sh → src/mvp/scripts/50_status.sh
Normal file → Executable file
28
src/mvp/scripts/60_start_api.sh
Executable file
28
src/mvp/scripts/60_start_api.sh
Executable file
@ -0,0 +1,28 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
CONFIG_IN_CONTAINER="${CONFIG_IN_CONTAINER:-/workspace/mvp/configs/dev.yaml}"
|
||||
LOG_PATH="${LOG_PATH:-/private/common/logs/argus_mvp_api.log}"
|
||||
PID_PATH="${PID_PATH:-/private/common/run/argus_mvp_api.pid}"
|
||||
|
||||
echo "[host] starting mvp v2 api in head container: ${HEAD_CONTAINER}"
|
||||
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "mkdir -p \"$(dirname "${LOG_PATH}")\" \"$(dirname "${PID_PATH}")\""
|
||||
|
||||
# Note: requires /workspace/mvp/py to be present in the container (mounted).
|
||||
# Escape $ so that the command substitution happens in the container, not on the host.
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "if test -f '${PID_PATH}'; then pid=\$(cat '${PID_PATH}'); if kill -0 \"\${pid}\" >/dev/null 2>&1; then echo 'already_running'; exit 0; fi; fi"
|
||||
|
||||
if [[ -z "${MVP_INTERNAL_TOKEN:-}" ]]; then
|
||||
echo "ERROR: MVP_INTERNAL_TOKEN env var must be set on host (will be passed into container)" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
docker exec -d -e MVP_INTERNAL_TOKEN="${MVP_INTERNAL_TOKEN}" "${HEAD_CONTAINER}" bash -lc "nohup python3 /workspace/mvp/py/server.py --config '${CONFIG_IN_CONTAINER}' >>'${LOG_PATH}' 2>&1 & echo \$! >'${PID_PATH}'"
|
||||
|
||||
echo "[host] started; pid stored in ${PID_PATH} (container path)"
|
||||
echo "[host] logs: ${LOG_PATH} (container path)"
|
||||
12
src/mvp/scripts/61_stop_api.sh
Executable file
12
src/mvp/scripts/61_stop_api.sh
Executable file
@ -0,0 +1,12 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
PID_PATH="${PID_PATH:-/private/common/run/argus_mvp_api.pid}"
|
||||
|
||||
echo "[host] stopping mvp v2 api (pid file: ${PID_PATH})"
|
||||
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "if ! test -f '${PID_PATH}'; then echo 'not_running'; exit 0; fi; pid=\"\$(cat '${PID_PATH}')\"; if kill -0 \"\${pid}\" >/dev/null 2>&1; then kill \"\${pid}\"; fi; rm -f '${PID_PATH}'; echo 'stopped'"
|
||||
10
src/mvp/scripts/62_status_api.sh
Executable file
10
src/mvp/scripts/62_status_api.sh
Executable file
@ -0,0 +1,10 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
PID_PATH="${PID_PATH:-/private/common/run/argus_mvp_api.pid}"
|
||||
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "if ! test -f '${PID_PATH}'; then echo 'not_running'; exit 0; fi; pid=\"\$(cat '${PID_PATH}')\"; if kill -0 \"\${pid}\" >/dev/null 2>&1; then echo \"running pid=\${pid}\"; else echo \"stale pid=\${pid}\"; fi"
|
||||
8
src/mvp/v1.1/scripts/lib.sh → src/mvp/scripts/lib.sh
Normal file → Executable file
8
src/mvp/v1.1/scripts/lib.sh → src/mvp/scripts/lib.sh
Normal file → Executable file
@ -6,9 +6,10 @@ ROOT_DIR="$(cd "${SCRIPT_DIR}/.." && pwd)"
|
||||
|
||||
COMPOSE_FILE="${ROOT_DIR}/docker-compose.yaml"
|
||||
|
||||
HEAD_CONTAINER="mvp11-ray-head"
|
||||
WORKER0_CONTAINER="mvp11-ray-worker-0"
|
||||
WORKER1_CONTAINER="mvp11-ray-worker-1"
|
||||
# Container names (refactor)
|
||||
HEAD_CONTAINER="${HEAD_CONTAINER:-argus-ray-head}"
|
||||
WORKER0_CONTAINER="${WORKER0_CONTAINER:-argus-ray-worker-0}"
|
||||
WORKER1_CONTAINER="${WORKER1_CONTAINER:-argus-ray-worker-1}"
|
||||
|
||||
SHARED_ROOT="${SHARED_ROOT:-/private}"
|
||||
RAY_DASHBOARD_ADDR="${RAY_DASHBOARD_ADDR:-http://127.0.0.1:8265}"
|
||||
@ -49,4 +50,3 @@ container_ip() {
|
||||
timestamp() {
|
||||
date +"%Y%m%d_%H%M%S"
|
||||
}
|
||||
|
||||
120
src/mvp/scripts/run_all_api.sh
Executable file
120
src/mvp/scripts/run_all_api.sh
Executable file
@ -0,0 +1,120 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
# Run the end-to-end flow using the API service (argus.service).
|
||||
# This script restarts the Ray cluster, prepares model/data, starts the API,
|
||||
# then submits PPO/GRPO/SFT via HTTP API and monitors the queue.
|
||||
|
||||
API_ADDR="${API_ADDR:-http://127.0.0.1:8080}"
|
||||
TOKEN="${MVP_INTERNAL_TOKEN:-}"
|
||||
DB_IN_CONTAINER="${DB_IN_CONTAINER:-/private/common/db/mvp.sqlite3}"
|
||||
|
||||
if [[ -z "${TOKEN}" ]]; then
|
||||
echo "ERROR: MVP_INTERNAL_TOKEN must be set in the host env for run_all_api.sh" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
api_curl() {
|
||||
curl -sS -H "Authorization: Bearer ${TOKEN}" "$@"
|
||||
}
|
||||
|
||||
api_wait_ready() {
|
||||
local tries="${1:-60}"
|
||||
for i in $(seq 1 "${tries}"); do
|
||||
if curl -sS -m 2 "${API_ADDR}/docs" >/dev/null 2>&1; then
|
||||
echo "[host] api_ready: ${API_ADDR}"
|
||||
return 0
|
||||
fi
|
||||
echo "[host] waiting api... (${i}/${tries})"
|
||||
sleep 2
|
||||
done
|
||||
echo "ERROR: api not ready: ${API_ADDR}" >&2
|
||||
return 1
|
||||
}
|
||||
|
||||
submit_taskspec() {
|
||||
local taskspec_path="$1"
|
||||
echo "[host] submit via API: ${taskspec_path}" >&2
|
||||
local resp
|
||||
resp="$(api_curl -H "Content-Type: application/yaml" --data-binary @"${taskspec_path}" "${API_ADDR}/api/v2/tasks")"
|
||||
echo "[host] submit_resp: ${resp}" >&2
|
||||
printf '%s' "${resp}" | python3 -c 'import sys,json; print(json.load(sys.stdin)["task_id"])'
|
||||
}
|
||||
|
||||
print_queue() {
|
||||
echo "[host] queue:"
|
||||
api_curl "${API_ADDR}/api/v2/queue" || true
|
||||
echo
|
||||
}
|
||||
|
||||
wait_task() {
|
||||
local task_id="$1"
|
||||
while true; do
|
||||
local body state
|
||||
body="$(api_curl "${API_ADDR}/api/v2/tasks/${task_id}")"
|
||||
state="$(printf '%s' "${body}" | python3 -c 'import sys,json; print(json.load(sys.stdin)["state"])')"
|
||||
echo "[host] task ${task_id}: ${state}"
|
||||
|
||||
if [[ "${state}" == "SUCCEEDED" ]]; then
|
||||
return 0
|
||||
fi
|
||||
if [[ "${state}" == "FAILED" || "${state}" == "CANCELED" ]]; then
|
||||
echo "[host] terminal=${state}; tail logs (best-effort):" >&2
|
||||
api_curl "${API_ADDR}/api/v2/tasks/${task_id}/logs?tail=200" >&2 || true
|
||||
return 1
|
||||
fi
|
||||
|
||||
print_queue
|
||||
sleep 10
|
||||
done
|
||||
}
|
||||
|
||||
echo "[host] ===== run_all_api.sh begin ====="
|
||||
|
||||
"${SCRIPT_DIR}/00_prereq_check.sh"
|
||||
"${SCRIPT_DIR}/03_cleanup_v1_legacy.sh"
|
||||
"${SCRIPT_DIR}/05_ensure_verl_repo.sh"
|
||||
|
||||
echo "[host] (re)create containers"
|
||||
"${SCRIPT_DIR}/01_up.sh"
|
||||
|
||||
echo "[host] restart ray cluster"
|
||||
"${SCRIPT_DIR}/20_start_head.sh"
|
||||
"${SCRIPT_DIR}/21_start_workers.sh"
|
||||
|
||||
echo "[host] prepare data/model/code snapshot"
|
||||
"${SCRIPT_DIR}/30_prepare_data_and_model.sh"
|
||||
|
||||
echo "[host] install api deps in head container"
|
||||
"${SCRIPT_DIR}/12_install_api_deps.sh"
|
||||
|
||||
echo "[host] stop api (best-effort)"
|
||||
"${SCRIPT_DIR}/61_stop_api.sh" || true
|
||||
|
||||
echo "[host] reset api sqlite db in container (best-effort): ${DB_IN_CONTAINER}"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "mkdir -p \"$(dirname "${DB_IN_CONTAINER}")\"; rm -f '${DB_IN_CONTAINER}' '${DB_IN_CONTAINER}-wal' '${DB_IN_CONTAINER}-shm' || true"
|
||||
|
||||
echo "[host] start api"
|
||||
MVP_INTERNAL_TOKEN="${TOKEN}" "${SCRIPT_DIR}/60_start_api.sh"
|
||||
api_wait_ready 60
|
||||
|
||||
print_queue
|
||||
PPO_TASK_ID="$(submit_taskspec "${ROOT_DIR}/taskspecs/ppo.yaml")"
|
||||
GRPO_TASK_ID="$(submit_taskspec "${ROOT_DIR}/taskspecs/grpo.yaml")"
|
||||
SFT_TASK_ID="$(submit_taskspec "${ROOT_DIR}/taskspecs/sft.yaml")"
|
||||
|
||||
echo "[host] submitted task ids:"
|
||||
echo " ppo=${PPO_TASK_ID}"
|
||||
echo " grpo=${GRPO_TASK_ID}"
|
||||
echo " sft=${SFT_TASK_ID}"
|
||||
|
||||
echo "[host] wait for tasks (in submission order)"
|
||||
wait_task "${PPO_TASK_ID}"
|
||||
wait_task "${GRPO_TASK_ID}"
|
||||
wait_task "${SFT_TASK_ID}"
|
||||
|
||||
echo "[host] ===== run_all_api.sh done ====="
|
||||
19
src/mvp/v1.1/scripts/run_all.sh → src/mvp/scripts/run_all_cli.sh
Normal file → Executable file
19
src/mvp/v1.1/scripts/run_all.sh → src/mvp/scripts/run_all_cli.sh
Normal file → Executable file
@ -5,13 +5,16 @@ SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
# Run the end-to-end flow using the CLI submitter (argus.cli).
|
||||
# This script restarts the Ray cluster and submits PPO/GRPO/SFT sequentially.
|
||||
|
||||
submit_and_wait() {
|
||||
local jobspec_in_container="$1"
|
||||
local taskspec_in_container="$1"
|
||||
local sid
|
||||
local out
|
||||
|
||||
echo "[host] submit via SDK: ${jobspec_in_container}"
|
||||
out="$(dexec "${HEAD_CONTAINER}" bash -lc "python3 /workspace/mvp/v1.1/py/run.py --config /workspace/mvp/v1.1/py/configs/dev.yaml --jobspec '${jobspec_in_container}' --action submit --no-wait" | tr -d '\r')"
|
||||
echo "[host] submit via SDK: ${taskspec_in_container}"
|
||||
out="$(dexec "${HEAD_CONTAINER}" bash -lc "cd /workspace/mvp/py && python3 -m argus.cli.run --config /workspace/mvp/configs/dev.yaml --taskspec '${taskspec_in_container}' --action submit --no-wait" | tr -d '\r')"
|
||||
sid="$(printf '%s\n' "${out}" | tail -n 1)"
|
||||
|
||||
if [[ -z "${sid}" ]]; then
|
||||
@ -23,7 +26,7 @@ submit_and_wait() {
|
||||
echo "[host] submitted: ${sid}"
|
||||
|
||||
while true; do
|
||||
st="$(dexec "${HEAD_CONTAINER}" bash -lc "python3 /workspace/mvp/v1.1/py/run.py --config /workspace/mvp/v1.1/py/configs/dev.yaml --action status --submission-id '${sid}'" | tr -d '\r' | tail -n 1)"
|
||||
st="$(dexec "${HEAD_CONTAINER}" bash -lc "cd /workspace/mvp/py && python3 -m argus.cli.run --config /workspace/mvp/configs/dev.yaml --action status --submission-id '${sid}'" | tr -d '\r' | tail -n 1)"
|
||||
echo "[host] status: ${sid} -> ${st}"
|
||||
case "${st}" in
|
||||
*SUCCEEDED*)
|
||||
@ -32,7 +35,7 @@ submit_and_wait() {
|
||||
*FAILED*|*STOPPED*)
|
||||
echo "[host] job failed: ${sid} (${st})" >&2
|
||||
echo "[host] last logs:" >&2
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "python3 /workspace/mvp/v1.1/py/run.py --config /workspace/mvp/v1.1/py/configs/dev.yaml --action logs --submission-id '${sid}' --tail 200" >&2 || true
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "cd /workspace/mvp/py && python3 -m argus.cli.run --config /workspace/mvp/configs/dev.yaml --action logs --submission-id '${sid}' --tail 200" >&2 || true
|
||||
return 1
|
||||
;;
|
||||
*)
|
||||
@ -50,7 +53,7 @@ submit_and_wait() {
|
||||
"${SCRIPT_DIR}/21_start_workers.sh"
|
||||
"${SCRIPT_DIR}/30_prepare_data_and_model.sh"
|
||||
"${SCRIPT_DIR}/12_install_py_deps.sh"
|
||||
submit_and_wait /workspace/mvp/v1.1/py/jobspecs/ppo.yaml
|
||||
submit_and_wait /workspace/mvp/v1.1/py/jobspecs/grpo.yaml
|
||||
submit_and_wait /workspace/mvp/v1.1/py/jobspecs/sft.yaml
|
||||
submit_and_wait /workspace/mvp/taskspecs/ppo.yaml
|
||||
submit_and_wait /workspace/mvp/taskspecs/grpo.yaml
|
||||
submit_and_wait /workspace/mvp/taskspecs/sft.yaml
|
||||
"${SCRIPT_DIR}/50_status.sh"
|
||||
10
src/mvp/taskspecs/README.md
Normal file
10
src/mvp/taskspecs/README.md
Normal file
@ -0,0 +1,10 @@
|
||||
# TaskSpecs
|
||||
|
||||
这里的 `*.yaml` 是 **TaskSpec**(训练任务语义参数),用于描述要跑的 workload(PPO/GRPO/SFT)以及数据/模型路径、训练步数、分布式规模等。
|
||||
|
||||
注意区分:
|
||||
- **TaskSpec**:训练语义(本目录)
|
||||
- **Ray Job**:Ray Jobs 的 submission(由 submitter 将 TaskSpec 转换为 Ray Job entrypoint + runtime_env 等)
|
||||
|
||||
字段保持与原 v1.1 `jobspecs/` 一致(迁移期不做字段改名/规范化,以降低风险)。
|
||||
|
||||
@ -1,65 +0,0 @@
|
||||
# MVP v1.1(GRPO + SFT on Ray)运行说明
|
||||
|
||||
本目录是一套**独立可运行**的 v1.1 交付:使用 1 个 Ray head(不跑训练)+ 2 个 Ray worker(各 4 GPU)在同一宿主机通过 `docker exec` 协调容器,并通过 **head 上的 `ray job submit`** 提交作业,同时强制 driver 落到 worker。
|
||||
|
||||
> 远程 dev 环境推荐目录布局:
|
||||
>
|
||||
> - `/home2/argus/infra/mvp/`
|
||||
> - `shared/`(持久化:datasets/hf/jobs/...)
|
||||
> - `verl/`(代码仓库,用于 prepare / snapshot)
|
||||
> - `v1.1/`(本目录内容:compose + scripts)
|
||||
|
||||
---
|
||||
|
||||
## 快速开始(远程机 argus@h1)
|
||||
|
||||
在 `/home2/argus/infra/mvp/v1.1/` 下执行:
|
||||
|
||||
```bash
|
||||
./scripts/run_all.sh
|
||||
```
|
||||
|
||||
说明:
|
||||
- `run_all.sh` 会按顺序提交 `ppo -> grpo -> sft`,并等待每个 job 结束后再提交下一个(避免 8 卡集群并发提交导致 “available GPUs 0” 直接失败)。
|
||||
|
||||
等价的“分步执行”:
|
||||
|
||||
```bash
|
||||
./scripts/00_prereq_check.sh
|
||||
./scripts/03_cleanup_v1_legacy.sh
|
||||
./scripts/05_ensure_verl_repo.sh
|
||||
./scripts/01_up.sh
|
||||
./scripts/20_start_head.sh
|
||||
./scripts/21_start_workers.sh
|
||||
./scripts/30_prepare_data_and_model.sh
|
||||
./scripts/12_install_py_deps.sh
|
||||
./scripts/44_submit_sdk.sh /workspace/mvp/v1.1/py/configs/dev.yaml /workspace/mvp/v1.1/py/jobspecs/ppo.yaml # no-wait
|
||||
./scripts/44_submit_sdk.sh /workspace/mvp/v1.1/py/configs/dev.yaml /workspace/mvp/v1.1/py/jobspecs/grpo.yaml # no-wait
|
||||
./scripts/44_submit_sdk.sh /workspace/mvp/v1.1/py/configs/dev.yaml /workspace/mvp/v1.1/py/jobspecs/sft.yaml # no-wait
|
||||
./scripts/50_status.sh
|
||||
```
|
||||
|
||||
停止并清理:
|
||||
|
||||
```bash
|
||||
./scripts/02_down.sh
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 关键约束(必须满足)
|
||||
|
||||
- **必须通过 head 执行 `ray job submit`** 提交任务(满足“从 head 提交”要求)。
|
||||
- **head 不跑训练**:head 以 `--num-cpus=0 --num-gpus=0` 启动;worker 具备自定义资源 `worker_node`;提交时 `--entrypoint-resources='{"worker_node": 1}'` 强制 driver 落 worker。
|
||||
- **共享路径统一为 `/private`(容器内)**:compose 将宿主机 `../shared` 挂载到容器内 `/private`,对齐生产环境。
|
||||
- **job 级别 code_path**:训练 JobSpec 中的 `code_path` 指向 `/private/common/code/verl/verl_repo`(由 `scripts/30_prepare_data_and_model.sh` 准备)。
|
||||
|
||||
---
|
||||
|
||||
## 共享目录(容器内 /private)
|
||||
|
||||
- `/private/datasets/`:数据(PPO 的 gsm8k RL parquet、SFT parquet)
|
||||
- `/private/hf/`:HF 缓存(模型持久化,避免重复下载)
|
||||
- `/private/jobs/<submission_id>/`:每个 Ray Job 的输出目录(logs/config/debug/checkpoints)
|
||||
- `/private/common/`:共享区(模型/数据/代码快照)
|
||||
- `/private/user/`:用户自定义代码(例如 reward_fn)
|
||||
@ -1,38 +0,0 @@
|
||||
# Ray 基础配置(dev 环境 / head 容器内视角)
|
||||
#
|
||||
# 说明:
|
||||
# - v1.1 的 SDK submitter 会读取本文件作为 RayConfig。
|
||||
# - v2.0 的 API 服务/调度器也复用本文件作为“基础 RayConfig”,并在其上扩展 v2 专属配置项(见 v2:)。
|
||||
address: "http://127.0.0.1:8265"
|
||||
|
||||
# 容器内共享根路径(对齐生产 /private)
|
||||
shared_root: "/private"
|
||||
|
||||
# 强制 driver 落 worker(head 不跑训练)
|
||||
entrypoint_num_cpus: 1
|
||||
entrypoint_resources:
|
||||
worker_node: 1
|
||||
|
||||
# 运行时环境变量(所有 job 通用)
|
||||
runtime_env:
|
||||
env_vars:
|
||||
HF_ENDPOINT: "https://hf-mirror.com"
|
||||
PYTHONUNBUFFERED: "1"
|
||||
|
||||
# 用户自定义代码目录(可被 PYTHONPATH 注入)
|
||||
user_code_path: "/private/user/code"
|
||||
|
||||
# v2.0 服务层配置(v1.1 submitter 会忽略这些字段;v2.0 服务会读取)
|
||||
v2:
|
||||
api:
|
||||
host: "0.0.0.0"
|
||||
port: 8080
|
||||
auth:
|
||||
# 内部 token 建议通过环境变量提供,避免写入配置文件
|
||||
token_env: "MVP_INTERNAL_TOKEN"
|
||||
sqlite:
|
||||
db_path: "/private/common/db/mvp_v2.sqlite3"
|
||||
scheduler:
|
||||
tick_s: 5
|
||||
retry_interval_s: 60
|
||||
max_running_tasks: 1
|
||||
@ -1,121 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
|
||||
def _require(d: dict[str, Any], key: str) -> Any:
|
||||
if key not in d or d[key] in (None, ""):
|
||||
raise ValueError(f"missing required field: {key}")
|
||||
return d[key]
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class RayConfig:
|
||||
address: str
|
||||
shared_root: str
|
||||
entrypoint_num_cpus: float
|
||||
entrypoint_resources: dict[str, float]
|
||||
runtime_env_env_vars: dict[str, str]
|
||||
user_code_path: str
|
||||
|
||||
@staticmethod
|
||||
def from_dict(d: dict[str, Any]) -> "RayConfig":
|
||||
runtime_env = d.get("runtime_env") or {}
|
||||
env_vars = (runtime_env.get("env_vars") or {}) if isinstance(runtime_env, dict) else {}
|
||||
if not isinstance(env_vars, dict):
|
||||
raise ValueError("runtime_env.env_vars must be a mapping")
|
||||
|
||||
entrypoint_resources = d.get("entrypoint_resources") or {}
|
||||
if not isinstance(entrypoint_resources, dict):
|
||||
raise ValueError("entrypoint_resources must be a mapping")
|
||||
|
||||
return RayConfig(
|
||||
address=str(_require(d, "address")),
|
||||
shared_root=str(_require(d, "shared_root")),
|
||||
entrypoint_num_cpus=float(d.get("entrypoint_num_cpus", 1)),
|
||||
entrypoint_resources={str(k): float(v) for k, v in entrypoint_resources.items()},
|
||||
runtime_env_env_vars={str(k): str(v) for k, v in env_vars.items()},
|
||||
user_code_path=str(d.get("user_code_path", f"{_require(d, 'shared_root')}/user/code")),
|
||||
)
|
||||
|
||||
def to_public_dict(self) -> dict[str, Any]:
|
||||
return {
|
||||
"address": self.address,
|
||||
"shared_root": self.shared_root,
|
||||
"entrypoint_num_cpus": self.entrypoint_num_cpus,
|
||||
"entrypoint_resources": self.entrypoint_resources,
|
||||
"runtime_env": {"env_vars": self.runtime_env_env_vars},
|
||||
"user_code_path": self.user_code_path,
|
||||
}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class JobSpec:
|
||||
workload: str # ppo|grpo|sft
|
||||
submission_id: str | None
|
||||
code_path: str
|
||||
model_id: str
|
||||
|
||||
train_file: str
|
||||
val_file: str | None
|
||||
|
||||
nnodes: int
|
||||
n_gpus_per_node: int
|
||||
|
||||
total_epochs: int
|
||||
total_training_steps: int
|
||||
|
||||
save_freq: int
|
||||
test_freq: int | None
|
||||
|
||||
trainer_device: str | None # only for sft (driver-side device)
|
||||
|
||||
@staticmethod
|
||||
def from_dict(d: dict[str, Any]) -> "JobSpec":
|
||||
workload = str(_require(d, "workload"))
|
||||
if workload not in ("ppo", "grpo", "sft"):
|
||||
raise ValueError(f"unsupported workload: {workload}")
|
||||
|
||||
val_file = d.get("val_file", None)
|
||||
if val_file in ("", "null"):
|
||||
val_file = None
|
||||
|
||||
test_freq = d.get("test_freq", None)
|
||||
if test_freq in ("", "null"):
|
||||
test_freq = None
|
||||
|
||||
return JobSpec(
|
||||
workload=workload,
|
||||
submission_id=(str(d["submission_id"]) if d.get("submission_id") else None),
|
||||
code_path=str(_require(d, "code_path")),
|
||||
model_id=str(_require(d, "model_id")),
|
||||
train_file=str(_require(d, "train_file")),
|
||||
val_file=(str(val_file) if val_file is not None else None),
|
||||
nnodes=int(d.get("nnodes", 2)),
|
||||
n_gpus_per_node=int(d.get("n_gpus_per_node", 4)),
|
||||
total_epochs=int(d.get("total_epochs", 1)),
|
||||
total_training_steps=int(d.get("total_training_steps", 10)),
|
||||
save_freq=int(d.get("save_freq", 10)),
|
||||
test_freq=(int(test_freq) if test_freq is not None else None),
|
||||
trainer_device=(str(d.get("trainer_device")) if d.get("trainer_device") else None),
|
||||
)
|
||||
|
||||
def to_public_dict(self) -> dict[str, Any]:
|
||||
out: dict[str, Any] = {
|
||||
"workload": self.workload,
|
||||
"submission_id": self.submission_id or "",
|
||||
"code_path": self.code_path,
|
||||
"model_id": self.model_id,
|
||||
"train_file": self.train_file,
|
||||
"val_file": self.val_file,
|
||||
"nnodes": self.nnodes,
|
||||
"n_gpus_per_node": self.n_gpus_per_node,
|
||||
"total_epochs": self.total_epochs,
|
||||
"total_training_steps": self.total_training_steps,
|
||||
"save_freq": self.save_freq,
|
||||
"test_freq": self.test_freq,
|
||||
}
|
||||
if self.workload == "sft":
|
||||
out["trainer_device"] = self.trainer_device or "cpu"
|
||||
return out
|
||||
@ -1,2 +0,0 @@
|
||||
PyYAML>=6.0.1
|
||||
|
||||
@ -1,10 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
echo "[head] install python deps for v1.1 SDK submitter (PyYAML)"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "pip install -r /workspace/mvp/v1.1/py/requirements.txt"
|
||||
|
||||
@ -1,19 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
CONFIG_PATH="${1:-/workspace/mvp/v1.1/py/configs/dev.yaml}"
|
||||
JOBSPEC_PATH="${2:-}"
|
||||
|
||||
if [[ -z "${JOBSPEC_PATH}" ]]; then
|
||||
echo "usage: $0 <ray_config_yaml_in_container> <jobspec_yaml_in_container>" >&2
|
||||
echo "example: $0 /workspace/mvp/v1.1/py/configs/dev.yaml /workspace/mvp/v1.1/py/jobspecs/ppo.yaml" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "[head] submit via Ray Python SDK"
|
||||
dexec "${HEAD_CONTAINER}" bash -lc "python3 /workspace/mvp/v1.1/py/run.py --config '${CONFIG_PATH}' --jobspec '${JOBSPEC_PATH}' --action submit --no-wait"
|
||||
|
||||
@ -1,104 +0,0 @@
|
||||
# MVP v2.0(服务化入口)
|
||||
|
||||
v2.0 在 v1.1(Ray Jobs SDK 提交链路)基础上新增一个**服务层**:
|
||||
- HTTP API 提交任务(PPO/GRPO/SFT)
|
||||
- 服务侧队列 + gang 资源判断
|
||||
- 识别 `verl` fail-fast 的资源不足失败并自动重试
|
||||
- SQLite 持久化队列/状态/attempt(NFS:`/private`)
|
||||
|
||||
设计文档见:
|
||||
- `specs/mvp/v2.0/v2_plan.md`
|
||||
- `specs/mvp/v2.0/v2_api.md`
|
||||
|
||||
## 快速开始(dev 示例)
|
||||
|
||||
约定:
|
||||
- Ray 容器仍由 v1.1 的 `docker-compose.yaml` 启动(head+2 workers)
|
||||
- v2 代码在宿主机:`/home2/argus/infra/mvp/v2/`(容器内挂载 `/workspace/mvp/v2/`)
|
||||
- v2 配置复用 v1.1:`/workspace/mvp/v1.1/py/configs/dev.yaml`(扩展了 `v2:` 段)
|
||||
|
||||
宿主机执行:
|
||||
|
||||
```bash
|
||||
export MVP_INTERNAL_TOKEN=... # 内部 token
|
||||
cd /home2/argus/infra/mvp/v2/scripts
|
||||
./12_install_v2_deps.sh
|
||||
./20_start_api.sh
|
||||
./22_status_api.sh
|
||||
```
|
||||
|
||||
API 测试(宿主机):
|
||||
|
||||
```bash
|
||||
curl -H "Authorization: Bearer ${MVP_INTERNAL_TOKEN}" http://127.0.0.1:8080/api/v2/queue
|
||||
```
|
||||
|
||||
> 进程日志与 pid(容器内路径)默认在 `/private/common/logs/` 与 `/private/common/run/`。
|
||||
|
||||
## 提交/查询/停止任务
|
||||
|
||||
约定:
|
||||
- API 地址(宿主机视角):`http://127.0.0.1:8080`
|
||||
- 鉴权:`Authorization: Bearer ${MVP_INTERNAL_TOKEN}`
|
||||
- 请求体:**raw YAML**(JobSpec,格式与 v1.1 jobspec 一致)
|
||||
|
||||
### 1) 提交任务(POST /api/v2/tasks)
|
||||
|
||||
准备一个 jobspec(示例:PPO):
|
||||
|
||||
```yaml
|
||||
workload: "ppo"
|
||||
submission_id: "" # v2 会忽略/覆盖,自动生成 task_id 并派生 ray_submission_id
|
||||
code_path: "/private/common/code/verl/verl_repo"
|
||||
model_id: "Qwen/Qwen2.5-0.5B-Instruct"
|
||||
train_file: "/private/datasets/gsm8k/train.parquet"
|
||||
val_file: "/private/datasets/gsm8k/test.parquet"
|
||||
nnodes: 2
|
||||
n_gpus_per_node: 4
|
||||
total_epochs: 1
|
||||
total_training_steps: 10
|
||||
save_freq: 10
|
||||
test_freq: -1
|
||||
trainer_device: null
|
||||
```
|
||||
|
||||
提交:
|
||||
|
||||
```bash
|
||||
curl -sS \
|
||||
-H "Authorization: Bearer ${MVP_INTERNAL_TOKEN}" \
|
||||
-H "Content-Type: application/yaml" \
|
||||
--data-binary @jobspec.yaml \
|
||||
http://127.0.0.1:8080/api/v2/tasks
|
||||
```
|
||||
|
||||
返回示例:
|
||||
|
||||
```json
|
||||
{"task_id":"mvp2-ppo-20251223-082813-6426","state":"QUEUED"}
|
||||
```
|
||||
|
||||
### 2) 查询任务(GET /api/v2/tasks/{task_id})
|
||||
|
||||
```bash
|
||||
curl -sS \
|
||||
-H "Authorization: Bearer ${MVP_INTERNAL_TOKEN}" \
|
||||
http://127.0.0.1:8080/api/v2/tasks/<task_id> | python3 -m json.tool
|
||||
```
|
||||
|
||||
可选:
|
||||
- 查看 attempts:`GET /api/v2/tasks/{task_id}/attempts`
|
||||
- 拉取日志(latest attempt):`GET /api/v2/tasks/{task_id}/logs?tail=2000`
|
||||
- 查看队列:`GET /api/v2/queue`
|
||||
|
||||
### 3) 停止/取消任务(POST /api/v2/tasks/{task_id}:cancel)
|
||||
|
||||
```bash
|
||||
curl -sS -X POST \
|
||||
-H "Authorization: Bearer ${MVP_INTERNAL_TOKEN}" \
|
||||
http://127.0.0.1:8080/api/v2/tasks/<task_id>:cancel
|
||||
```
|
||||
|
||||
说明:
|
||||
- 若任务已提交到 Ray(`SUBMITTED/RUNNING`),服务会调用 Ray Jobs SDK `stop_job(ray_submission_id)`。
|
||||
- 若任务仍在队列(`QUEUED/PENDING_RESOURCES`),服务直接标记 `CANCELED`(不会产生 attempt)。
|
||||
@ -1 +0,0 @@
|
||||
|
||||
@ -1,96 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
from .models import JobSpec
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class BuiltCommand:
|
||||
argv: list[str]
|
||||
|
||||
|
||||
def build_training_argv(spec: JobSpec, submission_id: str, job_dir: str) -> BuiltCommand:
|
||||
"""
|
||||
Returns argv for the actual training process (Hydra overrides preserved).
|
||||
This argv is executed by a lightweight Python driver entrypoint.
|
||||
"""
|
||||
if spec.workload in ("ppo", "grpo"):
|
||||
algo_overrides: list[str] = []
|
||||
if spec.workload == "grpo":
|
||||
algo_overrides.append("algorithm.adv_estimator=grpo")
|
||||
|
||||
test_freq = spec.test_freq if spec.test_freq is not None else -1
|
||||
val_file = spec.val_file if spec.val_file is not None else "null"
|
||||
|
||||
argv = [
|
||||
"python3",
|
||||
"-m",
|
||||
"verl.trainer.main_ppo",
|
||||
f"data.train_files={spec.train_file}",
|
||||
f"data.val_files={val_file}",
|
||||
"data.train_batch_size=256",
|
||||
"data.max_prompt_length=512",
|
||||
"data.max_response_length=512",
|
||||
f"actor_rollout_ref.model.path={spec.model_id}",
|
||||
"actor_rollout_ref.actor.optim.lr=1e-6",
|
||||
"actor_rollout_ref.actor.ppo_mini_batch_size=64",
|
||||
"actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4",
|
||||
"actor_rollout_ref.rollout.name=sglang",
|
||||
"actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8",
|
||||
"actor_rollout_ref.rollout.tensor_model_parallel_size=1",
|
||||
"actor_rollout_ref.rollout.gpu_memory_utilization=0.4",
|
||||
"actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4",
|
||||
"critic.optim.lr=1e-5",
|
||||
f"critic.model.path={spec.model_id}",
|
||||
"critic.ppo_micro_batch_size_per_gpu=4",
|
||||
"algorithm.kl_ctrl.kl_coef=0.001",
|
||||
*algo_overrides,
|
||||
"trainer.logger=console",
|
||||
"trainer.val_before_train=False",
|
||||
f"trainer.n_gpus_per_node={spec.n_gpus_per_node}",
|
||||
f"trainer.nnodes={spec.nnodes}",
|
||||
f"trainer.save_freq={spec.save_freq}",
|
||||
f"trainer.test_freq={test_freq}",
|
||||
f"trainer.total_epochs={spec.total_epochs}",
|
||||
f"trainer.total_training_steps={spec.total_training_steps}",
|
||||
"trainer.resume_mode=disable",
|
||||
f"trainer.default_local_dir={job_dir}/checkpoints",
|
||||
"+ray_kwargs.ray_init.address=auto",
|
||||
f"hydra.run.dir={job_dir}/logs/hydra",
|
||||
]
|
||||
return BuiltCommand(argv=argv)
|
||||
|
||||
if spec.workload == "sft":
|
||||
val_override = "null" if spec.val_file is None else spec.val_file
|
||||
trainer_device = spec.trainer_device or "cpu"
|
||||
|
||||
argv = [
|
||||
"python3",
|
||||
"-m",
|
||||
"verl.trainer.sft_trainer_ray",
|
||||
f"model.path={spec.model_id}",
|
||||
f"data.train_files={spec.train_file}",
|
||||
f"data.val_files={val_override}",
|
||||
"data.train_batch_size=64",
|
||||
"data.micro_batch_size_per_gpu=1",
|
||||
"data.max_token_len_per_gpu=2048",
|
||||
"data.max_length=1024",
|
||||
"trainer.logger=console",
|
||||
"trainer.project_name=mvp11-sft",
|
||||
f"trainer.experiment_name={submission_id}",
|
||||
f"trainer.total_epochs={spec.total_epochs}",
|
||||
f"trainer.total_training_steps={spec.total_training_steps}",
|
||||
f"trainer.save_freq={spec.save_freq}",
|
||||
"trainer.test_freq=-1",
|
||||
"trainer.resume_mode=disable",
|
||||
f"trainer.device={trainer_device}",
|
||||
f"trainer.default_local_dir={job_dir}/checkpoints",
|
||||
f"trainer.nnodes={spec.nnodes}",
|
||||
f"trainer.n_gpus_per_node={spec.n_gpus_per_node}",
|
||||
f"hydra.run.dir={job_dir}/logs/hydra",
|
||||
]
|
||||
return BuiltCommand(argv=argv)
|
||||
|
||||
raise ValueError(f"unsupported workload: {spec.workload}")
|
||||
|
||||
@ -1,63 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import shlex
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def _preflight() -> None:
|
||||
print("MVP_PRECHECK_PYTHON:", sys.executable, flush=True)
|
||||
print("MVP_PRECHECK_PYTHONPATH:", os.environ.get("PYTHONPATH"), flush=True)
|
||||
print("MVP_PRECHECK_MVP_CODE_PATH:", os.environ.get("MVP_CODE_PATH"), flush=True)
|
||||
try:
|
||||
import verl # type: ignore
|
||||
|
||||
print("MVP_PRECHECK_VERL_FILE:", getattr(verl, "__file__", None), flush=True)
|
||||
except Exception as e:
|
||||
print("MVP_PRECHECK_VERL_IMPORT_ERROR:", repr(e), flush=True)
|
||||
|
||||
try:
|
||||
import mvp_marker # type: ignore
|
||||
|
||||
print("MVP_PRECHECK_MARKER:", getattr(mvp_marker, "MARKER", None), flush=True)
|
||||
except Exception as e:
|
||||
print("MVP_PRECHECK_MARKER_MISSING:", repr(e), flush=True)
|
||||
|
||||
|
||||
def main() -> int:
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--job-dir", required=True)
|
||||
parser.add_argument("cmd", nargs=argparse.REMAINDER)
|
||||
args = parser.parse_args()
|
||||
|
||||
job_dir = Path(args.job_dir)
|
||||
job_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
_preflight()
|
||||
|
||||
if not args.cmd:
|
||||
print("no command provided", file=sys.stderr)
|
||||
return 2
|
||||
|
||||
# argparse includes the leading "--" if the caller uses it; strip it.
|
||||
cmd = list(args.cmd)
|
||||
if cmd and cmd[0] == "--":
|
||||
cmd = cmd[1:]
|
||||
if not cmd:
|
||||
print("no command provided", file=sys.stderr)
|
||||
return 2
|
||||
|
||||
# Execute training command as a subprocess so that logs are captured by Ray job logs.
|
||||
cmd_str = " ".join(shlex.quote(x) for x in cmd)
|
||||
print("MVP_DRIVER_EXEC:", cmd_str, flush=True)
|
||||
|
||||
proc = subprocess.run(cmd, check=False)
|
||||
print("MVP_DRIVER_EXIT_CODE:", proc.returncode, flush=True)
|
||||
return proc.returncode
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
raise SystemExit(main())
|
||||
@ -1,171 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import os
|
||||
import shlex
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import ray
|
||||
from ray.job_submission import JobSubmissionClient
|
||||
|
||||
from .builders import build_training_argv
|
||||
from .models import JobSpec, RayConfig
|
||||
from .yaml_io import dump_yaml
|
||||
|
||||
|
||||
def _ts() -> str:
|
||||
return datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
|
||||
|
||||
def _mkdir(p: Path) -> None:
|
||||
p.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
def _write_text(p: Path, content: str) -> None:
|
||||
_mkdir(p.parent)
|
||||
p.write_text(content, encoding="utf-8")
|
||||
|
||||
|
||||
def _write_json(p: Path, obj: Any) -> None:
|
||||
_write_text(p, json.dumps(obj, indent=2, ensure_ascii=False) + "\n")
|
||||
|
||||
|
||||
def _safe_basename(path: str) -> str:
|
||||
return path.rstrip("/").split("/")[-1]
|
||||
|
||||
|
||||
class RayJobTool:
|
||||
def __init__(self, cfg: RayConfig):
|
||||
self.cfg = cfg
|
||||
self.client = JobSubmissionClient(cfg.address)
|
||||
|
||||
def _job_dir(self, submission_id: str) -> str:
|
||||
return f"{self.cfg.shared_root}/jobs/{submission_id}"
|
||||
|
||||
def _runtime_env(self, spec: JobSpec) -> dict[str, Any]:
|
||||
env_vars = dict(self.cfg.runtime_env_env_vars)
|
||||
|
||||
# Default HF cache
|
||||
env_vars.setdefault("HF_HOME", f"{self.cfg.shared_root}/hf")
|
||||
env_vars.setdefault("HUGGINGFACE_HUB_CACHE", f"{self.cfg.shared_root}/hf/hub")
|
||||
env_vars.setdefault("TRANSFORMERS_CACHE", f"{self.cfg.shared_root}/hf/transformers")
|
||||
env_vars.setdefault("PYTHONUNBUFFERED", "1")
|
||||
|
||||
# Tool code path must be importable on workers (compose mounts v1.1 into all containers).
|
||||
# Place it before verl code to avoid interfering with verl import priority.
|
||||
tool_code_path = os.environ.get("MVP_TOOL_CODE_PATH", "/workspace/mvp/v1.1/py")
|
||||
|
||||
user_code_path = self.cfg.user_code_path
|
||||
code_path = spec.code_path
|
||||
|
||||
existing = env_vars.get("PYTHONPATH", "")
|
||||
prefix = f"{tool_code_path}:{code_path}:{user_code_path}"
|
||||
env_vars["PYTHONPATH"] = f"{prefix}:{existing}" if existing else prefix
|
||||
|
||||
# For debugging / log visibility
|
||||
env_vars["MVP_CODE_PATH"] = code_path
|
||||
|
||||
# SFT: ensure ray.init() connects to the cluster
|
||||
if spec.workload == "sft":
|
||||
env_vars.setdefault("RAY_ADDRESS", "auto")
|
||||
|
||||
return {"env_vars": env_vars}
|
||||
|
||||
def submit(self, spec: JobSpec, no_wait: bool) -> str:
|
||||
submission_id = spec.submission_id or f"mvp11_{spec.workload}_{_ts()}_{os.getpid()}"
|
||||
job_dir = self._job_dir(submission_id)
|
||||
|
||||
built = build_training_argv(spec, submission_id=submission_id, job_dir=job_dir)
|
||||
entrypoint_argv = [
|
||||
"python3",
|
||||
"-m",
|
||||
"mvp_v11.driver_entrypoint",
|
||||
"--job-dir",
|
||||
job_dir,
|
||||
*built.argv,
|
||||
]
|
||||
entrypoint = " ".join(shlex.quote(x) for x in entrypoint_argv)
|
||||
|
||||
runtime_env = self._runtime_env(spec)
|
||||
|
||||
# Prepare job artifacts directory
|
||||
job_root = Path(job_dir)
|
||||
_mkdir(job_root / "config")
|
||||
_mkdir(job_root / "logs")
|
||||
_mkdir(job_root / "debug")
|
||||
_mkdir(job_root / "checkpoints")
|
||||
|
||||
_write_text(job_root / "config" / "ray_config.yaml", dump_yaml(self.cfg.to_public_dict()))
|
||||
_write_text(job_root / "config" / "jobspec.yaml", dump_yaml(spec.to_public_dict()))
|
||||
_write_json(job_root / "config" / "submit_payload.json", {
|
||||
"submission_id": submission_id,
|
||||
"address": self.cfg.address,
|
||||
"entrypoint": entrypoint,
|
||||
"entrypoint_num_cpus": self.cfg.entrypoint_num_cpus,
|
||||
"entrypoint_resources": self.cfg.entrypoint_resources,
|
||||
"runtime_env": runtime_env,
|
||||
})
|
||||
|
||||
# Pre-submit debug snapshot (ray cluster resources via ray.init)
|
||||
try:
|
||||
ray.init(address="auto", ignore_reinit_error=True, log_to_driver=False)
|
||||
_write_json(job_root / "debug" / "ray_cluster_resources_pre.json", ray.cluster_resources())
|
||||
_write_json(job_root / "debug" / "ray_available_resources_pre.json", ray.available_resources())
|
||||
except Exception as e:
|
||||
_write_text(job_root / "debug" / "ray_resources_pre.error.txt", repr(e) + "\n")
|
||||
|
||||
try:
|
||||
submitted = self.client.submit_job(
|
||||
entrypoint=entrypoint,
|
||||
submission_id=submission_id,
|
||||
runtime_env=runtime_env,
|
||||
entrypoint_num_cpus=self.cfg.entrypoint_num_cpus,
|
||||
entrypoint_resources=self.cfg.entrypoint_resources,
|
||||
)
|
||||
except Exception as e:
|
||||
_write_text(job_root / "logs" / "submit.error.txt", repr(e) + "\n")
|
||||
raise
|
||||
|
||||
_write_text(job_root / "config" / "ray_submission_id.txt", submitted + "\n")
|
||||
|
||||
# Post-submit debug snapshot via SDK
|
||||
try:
|
||||
jobs = self.client.list_jobs()
|
||||
_write_text(
|
||||
job_root / "debug" / "ray_job_list_post.json",
|
||||
json.dumps([_job_details_to_dict(j) for j in jobs], indent=2) + "\n",
|
||||
)
|
||||
except Exception as e:
|
||||
_write_text(job_root / "debug" / "ray_job_list_post.error.txt", repr(e) + "\n")
|
||||
|
||||
if not no_wait:
|
||||
# caller can separately wait; keep submit non-blocking by default in scripts
|
||||
pass
|
||||
|
||||
return submitted
|
||||
|
||||
def status(self, submission_id: str) -> str:
|
||||
return str(self.client.get_job_status(submission_id))
|
||||
|
||||
def stop(self, submission_id: str) -> bool:
|
||||
return bool(self.client.stop_job(submission_id))
|
||||
|
||||
def logs(self, submission_id: str) -> str:
|
||||
return self.client.get_job_logs(submission_id)
|
||||
|
||||
def list(self) -> list[dict[str, Any]]:
|
||||
return [_job_details_to_dict(j) for j in self.client.list_jobs()]
|
||||
|
||||
|
||||
def _job_details_to_dict(obj: Any) -> dict[str, Any]:
|
||||
# Ray uses pydantic models internally, but depending on bundled pydantic version
|
||||
# we might get `.model_dump()` (v2) or `.dict()` (v1).
|
||||
if hasattr(obj, "model_dump"):
|
||||
return obj.model_dump() # type: ignore[no-any-return]
|
||||
if hasattr(obj, "dict"):
|
||||
return obj.dict() # type: ignore[no-any-return]
|
||||
if hasattr(obj, "__dict__"):
|
||||
return dict(obj.__dict__)
|
||||
return {"repr": repr(obj)}
|
||||
@ -1,21 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
def load_yaml(path: str) -> dict[str, Any]:
|
||||
p = Path(path)
|
||||
data = yaml.safe_load(p.read_text(encoding="utf-8"))
|
||||
if data is None:
|
||||
return {}
|
||||
if not isinstance(data, dict):
|
||||
raise ValueError(f"yaml root must be a mapping: {path}")
|
||||
return data
|
||||
|
||||
|
||||
def dump_yaml(data: dict[str, Any]) -> str:
|
||||
return yaml.safe_dump(data, sort_keys=False, allow_unicode=True)
|
||||
|
||||
@ -1,10 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
# Install v2.0 API dependencies inside the head container (best-effort).
|
||||
# Assumes v1.1 containers are already up and v2.0 code is mounted/available.
|
||||
|
||||
HEAD_CONTAINER="${HEAD_CONTAINER:-mvp11-ray-head}"
|
||||
|
||||
docker exec -i "${HEAD_CONTAINER}" bash -lc "python3 -m pip install -U pip >/dev/null 2>&1 || true"
|
||||
docker exec -i "${HEAD_CONTAINER}" bash -lc "python3 -m pip install -r /workspace/mvp/v2/py/requirements.txt"
|
||||
@ -1,28 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
CONFIG_IN_CONTAINER="${CONFIG_IN_CONTAINER:-/workspace/mvp/v1.1/py/configs/dev.yaml}"
|
||||
LOG_PATH="${LOG_PATH:-/private/common/logs/mvp_v2_api.log}"
|
||||
PID_PATH="${PID_PATH:-/private/common/run/mvp_v2_api.pid}"
|
||||
|
||||
echo "[host] starting mvp v2 api in head container: ${HEAD_CONTAINER}"
|
||||
|
||||
dexec bash -lc "mkdir -p \"$(dirname "${LOG_PATH}")\" \"$(dirname "${PID_PATH}")\""
|
||||
|
||||
# Note: requires /workspace/mvp/v2.0/py to be present in the container (mounted or copied).
|
||||
# Escape $ so that the command substitution happens in the container, not on the host.
|
||||
dexec bash -lc "if test -f '${PID_PATH}'; then pid=\$(cat '${PID_PATH}'); if kill -0 \"\${pid}\" >/dev/null 2>&1; then echo 'already_running'; exit 0; fi; fi"
|
||||
|
||||
if [[ -z "${MVP_INTERNAL_TOKEN:-}" ]]; then
|
||||
echo "ERROR: MVP_INTERNAL_TOKEN env var must be set on host (will be passed into container)" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
docker exec -d -e MVP_INTERNAL_TOKEN="${MVP_INTERNAL_TOKEN}" "${HEAD_CONTAINER}" bash -lc "nohup python3 /workspace/mvp/v2/py/server.py --config '${CONFIG_IN_CONTAINER}' >>'${LOG_PATH}' 2>&1 & echo \$! >'${PID_PATH}'"
|
||||
|
||||
echo "[host] started; pid stored in ${PID_PATH} (container path)"
|
||||
echo "[host] logs: ${LOG_PATH} (container path)"
|
||||
@ -1,12 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
PID_PATH="${PID_PATH:-/private/common/run/mvp_v2_api.pid}"
|
||||
|
||||
echo "[host] stopping mvp v2 api (pid file: ${PID_PATH})"
|
||||
|
||||
dexec bash -lc "if ! test -f '${PID_PATH}'; then echo 'not_running'; exit 0; fi; pid=\"\$(cat '${PID_PATH}')\"; if kill -0 \"\${pid}\" >/dev/null 2>&1; then kill \"\${pid}\"; fi; rm -f '${PID_PATH}'; echo 'stopped'"
|
||||
@ -1,10 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
|
||||
# shellcheck source=lib.sh
|
||||
source "${SCRIPT_DIR}/lib.sh"
|
||||
|
||||
PID_PATH="${PID_PATH:-/private/common/run/mvp_v2_api.pid}"
|
||||
|
||||
dexec bash -lc "if ! test -f '${PID_PATH}'; then echo 'not_running'; exit 0; fi; pid=\"\$(cat '${PID_PATH}')\"; if kill -0 \"\${pid}\" >/dev/null 2>&1; then echo \"running pid=\${pid}\"; else echo \"stale pid=\${pid}\"; fi"
|
||||
@ -1,12 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
# v2.0 scripts are intended to run on the host and control the existing Ray containers
|
||||
# (same topology as v1.1). Adjust container names via env vars if needed.
|
||||
|
||||
HEAD_CONTAINER="${HEAD_CONTAINER:-mvp11-ray-head}"
|
||||
|
||||
dexec() {
|
||||
docker exec -i "${HEAD_CONTAINER}" "$@"
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user